UpLift-19 Video and Pictures

UpLift-19 Media and Information

This is an unedited video and still video images from a GoPro3 Black edition camera of a weather balloon payload area. It climbs to 33.333Km where the balloon bursts and the payload free-falls back for recovery. It was a commercial flight fo Clintons Toyota, Campbelltown, NSW, Australia. They also sponsored a non-commercial payload for Project ThunderStruck – our first test for the Project for a supersonic glider to break Mach 1.5 (1,800kph / 1,120mph)

http://projectthunderstruck.org

The so called Space Chicken, frame and with the parachute deployed, it reached a top speed of 400kph / 250mph. At the 12 minute 14 second mark on the video (2 hours into the flight) there is a noticeable jarring of the payload and a small pop. This is the balloon exploding. Immediately shredded balloon hits the payload as there is virtually no air to slow it. 2 seconds later, the payload tilts showing the cloud of shredded balloon About 1 minute into the free fall we reached 400kph according to the telemetry. The drag increases at lower altitudes, so the effect of the wind is worse as it descends. It then improves as the air density increases. In the seconds after release you get to glimpse the balloon shreds rocketing into the payload from the explosion and then the cloud of shredded material in the sky. About 10 seconds later there are glimpses of the blue and white parachute not doing much during the fall due to the low air resistance. The cutdown box that is placed above the parachute actually fouls the parachute slightly during the free fall before it becomes effective at slowing the payload. The fouled parachute causes spin at the faster speeds. The video finish with the payload still well above the clouds. This was UpLift-19 by Robert and Jason Brand for Clintons Toyota.

PS, notice that thin blue line in the video and the photos? That is all the atmosphere we have and that is pretty thin near the top. 72 percent of the atmosphere is below the common cruising altitude of commercial airliners (about 10,000 m or 32,800 ft)

Jason and Robert Brand setting up the cameras on UpLift-19

Jason and Robert Brand setting up the cameras on UpLift-19

 Balloon-Burst1-seconds-after-the-event-UpLift-19

Balloon-Burst1-seconds-after-the-event-UpLift-19. Those are the shreds of the balloon.

Balloon Burst3 seconds after the event - UpLift-19

Balloon Burst3 seconds after the event Note the cloud is getting smaller as the thin air slows it faster. – UpLift-19

Balloon Burst4 seconds after the event - UpLift-19

Balloon Burst4 seconds after the event – UpLift-19 – yes, that is the sun.

Balloon Burst5 seconds after the event - UpLift-19

Balloon Burst5 seconds after the event – UpLift-19

Balloon Burst6 with Parachute in view seconds after the event - UpLift-19

Balloon Burst6 with Parachute in view seconds after the event – UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds - UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds – UpLift-19

Balloon Burst8 - Speed has slowed, but drag is greater in the thickening atmosphere - UpLift-19

Balloon Burst8 – Speed has slowed, but drag is greater in the thickening atmosphere – UpLift-19

Note: The images above are from the High Definition Video, not still images. The quality of our camera work has increased dramatically with some improvements to our methodology.

Zero Pressure Balloon Converter

OLYMPUS DIGITAL CAMERAWeather Balloon to Zero Pressure Balloon Converter.

By Robert Brand

Two weeks ago I was a guest lecturer in Aerospace at a Sydney University spoke about the current space projects I am involved in. It was good to see interest from some students to take part in some of the activities. I stayed on to listen to the second guest lecturer talk about high energy particles and there effects on astronauts and also equipment.

Following the lectures I was invited to talk about a difficult project of taking a science experiment to the stratosphere and holding it there for 3 hours. Now this creates a real challenge. It can either be done by a seriously expensive Zero Pressure Balloon (ZPB), shown in the picture at right, or it needs some way of holding a weather balloon below it burst point, both are not ways i would like to think about. Either big dollars or big problems.

My solution is to turn the Weather Balloon into a ZPB before the envelope pops and the lot comes down. I have designed a Weather Balloon to Zero Pressure Balloon Converter. Due to the commercial ramifications, I cannot give the fine details of the specific way we will do this or the materials used, but as you will obviously realise, it means opening up the balloon canopy so the helium (or Hydrogen) stops expanding the balloon fabric thus the balloon should then find a floating point, provided that the canopy is not too elastic.

Since this will require additional weight and we need to get extreme height to be in the stratosphere at a required altitude and we don’t want the risk of the canopy bursting early, I expect that it will require 2-3Kg weather balloons. Not cheap, but way less than ZPB that probably start at a price of US$7,000 or so.

Now for the hard part. We will need to test to see exactly what happens and how to control the eventual height based on gas fill, elasticity of the balloon, the balloon size / weight and the payload size.

The balloon should survive until next morning in the stratosphere when the sun’s UV will cause the envelope to deteriorate along with the punishment it has received during the night. Given that it is not fully stretched, it may in fact last much longer. This will the subject of more testing.

The next problem is that the stratospheric winds run east to west – the opposite of the jet stream – yes there is balance in the world! the difference is (from our experience over Australia) that the wind starts out light and then increases with strength at height. Several times we have seen stratospheric winds reaching 100kph at altitudes of 33.333Km (/3 the way to space). As that is our highest record and we have been involved in flights by others to that height, it seems a fairly linear increase over height and it may get faster at higher altitude. Only tests will tell, but 3 hours at 33.33Km is a long drive. It means carefully planning our launch points and recovery points. In fact we may need to launch on days when the jet stream is fast to drag the payload a long way to the east (say 150km and then allow the winds in the stratosphere to pull it 300Km to the west and allow it to fall back through the jet stream with a big parachute, allowing time to pull the payload back to near the launch point.

With radio cutdown an option, we need to be close enough for that to work on UHF frequencies of to create a HF cutdown on much lower radio frequencies that will travel further.

Weather to ZPB converterAs APRS is not an option on commercial flights, We will use SPOT3 units in gimbals for the commercial tracking. For non commercial flights I have toyed with the idea of using the HAM radio based APRS to upLink commands for cutdown. As a final cutdown I am looking at a time based mechanism to terminate the envelope or cut down the payload. More testing!

As a  teaser, the photo to the right is some of the “plumbing” without the servo and other systems. It is intentionally difficult to see, but the point is that it is off the shelf technology that is very light weight. In fact not all of this mechanism flies – some is only there for the “fill” and another device (not shown) makes the final configuration. When the cutdown occurs, we will lose the servo and the plumbing – a total cost of about US$15. Total weight of equipment lost will be in the order of 200 grams and the balloon envelope will also be able to fall to earth but since it will not be blown to pieces, it will flutter to a soft landing. I expect to have a number of the mechanisms ready and off the shelf to provide services to customers that wish to have low cost long times in the stratosphere. Note, that if we can keep the payload closer to the lower parts of the stratosphere, the drift is negligible from our general experience for a three hour duration in the stratosphere.

Other benefits here are a new easy fill system that requires no more struggling with cable ties at the last moment while holding on to a big balloon. I expect that we will use a smaller version for smaller balloons. The weight is likely to be an additional 50 grams that we can factor in, but the benefits will be great in securing the payload and ensuring an easy and safe tie off in the final moments. Once we test that I will publish the arrangements. More on the Zero Pressure Balloon Converter in future posts.

At the Mercy of the Winds

Forcast for upLift-20Adverse Winds Delay UpLift-20

It seems that we cannot win when planning some balloon flights due to unfavourable or adverse winds. Whilst UpLift-19 was very straight forward, I have had to postpone our next weather balloon flight by 2 weeks so far – that is two delays and who knows what is going to happen after that. It seems that we might need to make a determination a day at a time a week out.

What has caused this delay. Well other than aircraft maneuvers over the area, it is the wind. Our launch point is fixed as the landing area is determined by the launch point and we have a range that is covered by Telstra broadband and has few trees or water.

In this case the water is the big problem. We simply do not launch when the winds are taking us to the lakes area. We did overfly this area once, but not at a high altitude where the balloon would burst. So why do we worry about those little blue areas? Basically because they are not so little. on Google earth they in fact look like dry areas. It turns out that we discovered the unusual nature of the lakes during one of our earlier flights in the UpLift series. When we recovered the pictures from UpLift-2 we saw a massive lake that was simply not showing on the maps. Well it was there in name only. Here is what the balloon payload saw:

Fat Lady Lake UpLift-2

Above: They say it is not all over until the “fat lady sings”. We spotted this lake (normally dry) and my son Jason said it looks like a fat lady! Since the balloon had popped and it was descending on parachute, I guess she was singing! She also looks like she has burst a gasket singing the highs. Note that there are more lakes to its left at the bottom centre of the photo. There are also lakes to the north, out of view. Recovery of payloads would be near impossible in these lakes.

Below: As a reminder of the problems with water, our balloon payload parachuted straight to the only large farmer’s dam in the area and landed less than half a metre from the water. ouch! That’s our ballooning friends, Todd and Mark next to the payload. I have blanked out the actual payload box as it was a commercial flight that required secrecy. We can now inform you that it was the test flight for Bulla’s Frozen Yogurt “Cloud 9”. We eventually send balloons into the stratosphere to freeze yogurt in the clouds. There were 12 flights and 12 recoveries.

UpLift-2

So what else can postpone a launch when all else is going right?   Last flight a few weeks back, we encountered 40kph winds (25mph) and that was a shock to the system after traveling 7 hours by car and staying overnight in a nearby town. We were lucky to find some protection from the wind, but the wind sheer as the balloon rose past the protection could have ripped the balloon apart. We were lucky. Note the cameras on the ground, One at Mark’s feet. They got flung off on impact. We now tie them on with a lanyard to make sure that we do not lose them.

We always carry enough gas for a second launch if the balloon pops before launch, but it is something we do not want to think about. It has happened once! always having two balloons is not good business if you don’t really use it before the expiry date. Some larger balloons cost hundreds of dollars.

Watch the weather and use prediction software for the stratospheric wind details.

UpLift-1 Flight Data Pt-3 (Archives)

*** Retrieved from Archives ***

UpLift-1 Facts and Figures 28th Dec 2011 Pt-3

Time for some SCIENCE. I have cleaned up all the data from the flight removing duplicated figures and out of place data that sometimes occurs from having lots of receiving stations all trying to add it to the database. The figures are certainly interesting and even fun to see what is going on during the flight.

Wind Speed at Altitude

We all know what the weather is like in our own countries and the news and documentaries will often let you know about other countries. I live in Australia on the SE coast. For my high altitude balloon flight I traveled to the centre of my state (New South Wales – NSW) for a number of reasons. Predominantly it was because of the prevailing winds and the flat open farmland. Easier to ensure a clean landing with few trees and no mountains to have to climb. When I say prevailing winds, I am talking about those at all altitudes that my balloon will be passing through. I mentioned that in previous posts that I use a balloon prediction site and that I get a good idea of wind speeds and thus the direction of the flight. The site even outputs the file as a kml file that can easily be opened by Google Earth.

We can easily use the weather service for the ground winds, but the upper level winds can be a bit fickle and not easily forecast by the prediction service, but the balloon does not stay in those regions too long. The main winds that will govern most of the flight as my latitude (-33 degrees – south of the equator)  are those of the jet stream.

Jet Streams (from Wikipedia):

Jet streams are fast flowing, narrow air currents found in the atmospheres of some planets, including Earth. The main jet streams are located near the tropopause, the transition between the troposphere (where temperature decreases with altitude) and the stratosphere (where temperature increases with altitude).The major jet streams on Earth are westerly winds (flowing west to east). Their paths typically have a meandering shape; jet streams may start, stop, split into two or more parts, combine into one stream, or flow in various directions including the opposite direction of most of the jet. The strongest jet streams are the Polar jets, at around 7–12 km (23,000–39,000 ft) above sea level, and the higher and somewhat weaker Subtropical jets at around 10–16 km (33,000–52,000 ft). The Northern Hemisphere and the Southern Hemisphere each have both a polar jet and a subtropical jet. The northern hemisphere polar jet flows over the middle to northern latitudes of North America, Europe, and Asia and their intervening oceans, while the southern hemisphere polar jet mostly circles Antarctica all year round. Jet streams are caused by a combination of a planet’s rotation on its axis and atmospheric heating (by solar radiation and, on some planets other than Earth, internal heat). Jet streams form near boundaries of adjacent air masses with significant differences in temperature, such as the polar region and the warmer air towards the equator.

So what did we find? The following charts shows the balloon flight right up to burst point and also from burst point to landing. It shows the wind strengths that it encountered in kilometers per hour. For reference 40km per hour = 25 miles per hour. Altitude is in meters and similarly 10,000m = 6.2 miles. The chart showing descent should be similar but the rate of fall is exponential and not linear so there will be some compression and expansion of the horizontal axis. Due to the fall taking 1/3 the time of the climb there will be fewer plot points and also a greater potential for GPS inaccuracy.

Wind Speed vs Altitude - Climb

Wind Spped vs Reverse Altitude - Fall

In the chart below I have labelled the major points of change in the chart. Of interest there were three layers of wind prior to the balloon entering the jet stream or streams. The major point of interest was that there were two jet streams both traveling in the same directions. The winds of the troposphere were approximately half of the strength of the jet streams and in the opposite direction by chance. If the balloon had made it to higher levels in the troposphere, it may have encountered other wind directions, but the winds may have been much lower in strength.

Wind Speed vs Altitude - Climb - modified

Air Pressure and Altitude

The chart below shows plot points and both altitude and air pressure in Pascals. Pascals for those in non metric countries are defined in Wikipedia as:

The pascal (symbol: Pa) is the SI derived unit of pressure, internal pressure, stress, Young’s modulus and tensile strength, named after the French mathematician, physicist, inventor, writer, and philosopher Blaise Pascal. It is a measure of force per unit area, defined as one newton per square metre. In everyday life, the pascal is perhaps best known from meteorological barometric pressure reports, where it occurs in the form of hectopascals (1 hPa ≡ 100 Pa) or kilopascals (1 kPa ≡ 1000 Pa). In other contexts, the kilopascal is commonly used, for example on bicycle tire labels. One hectopascal corresponds to about 0.1% of atmospheric pressure slightly above sea level; one kilopascal is about 1% of atmospheric pressure. One hectopascal is equivalent to one millibar; one standard atmosphere is exactly equal to 101.325 kPa or 1013.25 hPa or 101325 Pa.

Simply at sea level there will be 100,000 Pascals (left side of graph and the start of the plot from the balloon). Air pressure (Pa)  is plotted in red and altitude (m) in blue. The rate of climb is near linear while air pressure is more exponential. Note that the initial rate of climb on the left corner is high as it appears that we were in a thermal or rising air mass.

Altitude and Air Pressure

That concludes the science breakdown of the flight. there are plenty of more breakdowns of the data that can be carried out, but in this and the previous 2 posts I have explored most of the more relevant information that can be derived from the flight. My next post will provide access to the data from the flight.

UpLift-1 Flight Data Pt-1 (Archives)

*** Retrieved from Archives ***

UpLift-1 Facts and Figures 28th Dec 2011 Pt-1

Time for some SCIENCE. I have cleaned up all the data from the flight removing duplicated figures and out of place data that sometimes occurs from having lots of receiving stations all trying to add it to the database. The figures are certainly interesting and even fun to see what is going on during the flight.

Some Facts first:

  • Altitude of the launch site is about 90m or 300ft above sea level. flat farmland was chosen for lack of trees and easy access for recovery.
  • Morning was chosen for air stability and lower wind levels.
  • Weather: Clear with little to no wind. Summer.
  • Flight launch: 10;53 28th Dec 2011 EDST (23:53 27th Dec 2011 UTC).
  • Flight landing: 13:40 28th Dec 2011 EDST (02:53 28th Dec 2011 UTC).
  • Flight time: 2 hours 47 minutes.
  • Maximum Recorded Altitude: 26.181km – 85,896 feet – 16.2681 miles.
  • Distance traveled: 45.6km (28 miles).
  • Direction from launch of 72 degrees.
  • Rate of climb: 3m/sec (5ft/sec) near sea level to near 5m/sec (8ft/sec) at the burst point.
  • Payload temperature during flight: 34C (93F) at ground level to -12C (10.4F) minimum.
  • Maximum recorded rate if fall: 33m/sec (110ft/sec)
  • Anomalies encountered: Thermal at the time of release caused 9m (30ft) initial rate of climb.
  • Balloon: Totex 350g (optimum fill 1.2m, actual fill 1.35m diameter)
  • Gas used for lift: Helium
  • Payload: Polystyrene box with a bit less than 1/2kg weight (1lb) including parachute.
  • Camera: GoPro 7mp still camera set to take photos every 30 seconds – lasted entire flight. Housing included
  • Tracking was via Amateur Radio APRS with Internet and direct reception in vehicle. 145.175MHz Packet radio.
  • Transmitter from Argent Data system with GPS rated for over 60,000 feet and 1/2 watt transmitter.
  • Antenna – precision tuned vertically mounted dipole.
  • Transmitter Power: 2 x mounted on-board Lithium 3V pile batteries.
  • Reporting time: 20 seconds.
  • Thermal insulation for transmitter: Polystyrene capsule and three layers of bubble wrap.

The first bit of data showed that UpLift-1 climbed very quickly. At first I could not believe the rate of climb, but there it was climbing at 9m per second. I now know that this was an anomaly. The simplest and most likely explanation is that at the time that we released the balloon we were in a thermal area where the hot air at that spot was rising quickly were near by air was falling. As it was early in the day, upper air thermals had not formed so the affect was short lived. So here is the graph of altitude for the flight:

Atitude vs Time

At the very start of the flight there is a slightly different rate of climb caused by the thermal that dissipates at about 2km. From then on the climb is steady and near flat. The rate of climb being mainly determined by the size of the balloon (air resistance and lift) and the wright of the payload. As the air thins, the balloon expands keeping the air resistance somewhat the same, but as altitude increases, the ability to lift is also reduced. The result is a fairly consistent rate of climb. At the maximum altitude the balloon bursts and the payload is released. The parachute is ineffective in the free air and the rate of fall is determined by air density producing a somewhat parabolic curve. For most balloon flights with a reasonable rate of climb, the climb to fall ratio is usually between 3:1 or 4:1 for flight estimations.

The rate of climb graph shows the linear and parabolic effects more clearly”

Rate of Climb - Fall vs Time

In the graph above, you can clearly see the high initial rate of climb and the slowing of the rate as it left the thermal event. The rate was not flat, but slowly climbed from 3m/sec (5ft/sec)  to near 5m/sec (8ft/sec) at the burst point. There is a fairly long period of time following the burst point before the payload reaches terminal velocity of greater than 33m/sec (110ft/sec) – remember that the plots are 20 seconds apart. There is one plot during the initial fall that indicated that the payload was accelerating and was showing 9m/sec (30ft/sec) fall and accelerating until terminal velocity is reached – the point where air resistance stops any further acceleration due to gravity.

The payload – a foam box weighing less than 1/2kg (about 1lb) has plenty of air resistance at sea level, but very little in the thin atmosphere. As it falls the air density increases and the rate slows. Where the rate of climb was determined by fairly linear forces, the rapid descent is clearly non linear when plotted against time.

Part two shortly with links to both imperial and decimal data data sets.

UpLift-1 Launch (Archives)

UpLift-1 Takeoff 28th Dec 2011.

UpLift-1 launch weatherBefore we even left home we needed a massive list to make sure that we did not leave anything behind. After all, a 600km / 400 mile trip for nothing would not be a lot of fun. It was a huge list for such a small balloon and payload. It included the balloon, parachute, payload, helium, spare balloon, test equipment, hoses, cameras, tripod, 2-way radios, tracking radios, decoders, computer, USB cables, mobile phones, car chargers and much, much more. But this is not about that story, this is launch day! We traveled to West Wyalong in NSW (Australia) and spent the night in a great little hotel ready for an early morning departure. We still had 100km / 60 miles to drive to the launch site. The first thing was to check the weather. We had already looked at a long distance forecast before setting the date as the Civil Aviation Safety Authority (CASA) in Australia have to issue an alert to pilots for our balloon. CASA have been wonderful UpLift-1 Launch site with Jason Brand age 9and amazingly helpful. A peek out the door reveals a perfect day for a balloon flight. The photo on right shot outside my hotel room reveals a brilliant day with little wind early in the morning. We packed the car and headed to Rankins Springs near Goolgowi. I had fallen in love with this little town in the middle of nowhere. With about 50 people living in town, it was just a speck on the map at the intersecting of some sealed main roads. What struck me was that it was a place that people cared about. The public places were clean and the grass cut, perfect for preparing a balloon flight.

We found a clear grassed area next to an old Railway water tank used for filling steam engines. The contrast was great – the old and the new. This story is going to be a bit instructive so lots and lots of pictures. First I had my son Jason (9) laidUpLift-1 fill - Latex Gloves out the clean plastic sheet for the filling operation. We placed items in the corner in case a breeze kicked up the corners and destroyed the balloon. We also used Latex gloves to stop acids and other oils from transferring from our hands to the balloon and potentially causing an early failure of the balloon when the UV and other chemicals in the air act on it. We could also have used clean cotton gloves. The problem there was two fold. Sweat from our hands filled the gloves and needed to be changed occasionally to prevent and drops from landing on the balloon. The second problem was that every time we wanted to use duct tape, our gloves stuck very well to the tape! That is me on the left taping the hose to the balloon to protect it and getting the gloves stuck to the tape. There were cable ties under the tape and I used the tape to protect the balloon from sharp edges. The cable ties held the balloon to the flexible PVC tube. I also had the other end of the tube over the balloon fill regulator on the helium tank. That was just sealed with duct tape.

It was then time to prepare the payload. I had decided to block off one of the port holes for the video camera as I wanted this balloon to rise quickly. I was also going to overfill the balloon above specifications to ensure that it would explode a bit earlier than normal. All precautions for a first flight. While we were preparing for the flight, Wally, one of the locals came by on his ride-on mower and remembered me calling in at the petrol / gas station a month earlier. He was excited that we had chosen his town for the launch and APRS Tracker being wrapped in bubble wrapwent off to find the kids in town so that they could join in with all the excitement. Wally was the unofficial “mayor” of the town! A lovely character that obviously cared about kids. The photo on the right shows me preparing the GPS transmitter (Amateur Radio APRS). I am wrapping it in bubble wrap as a thermal insulator to protect it from the cold at the outside air temperature at times during the flight will be between -40 (-40F) and -50C (-58F) or possibly even lower. The capsule is also made from Polystyrene so that too will provide some protection from the cold, but with openings for the camera, there will be some cold air entering the capsule. Care was taken to ensure the dipole antenna (the two gold wires) was mounted vertically in the capsule in the correct place and the small GPS receiver was on top so that it would get a strong signal from the GPS satellites orbiting the earth. The balloon was on a 10m (30ft) cord so that the antenna had no chance of puncturing the balloon. The final benefit was that the capsule would never land upside down so the GPS receiver would always be able to receive satellite signals and report its position once on the ground. Lots to consider. The batteries were also the best that we could buy. Failure was not an option and the cold can kill batteries. We also wanted UpLift-1 Tracker competethe transmitter to last for as long as it took to recover the balloon. The unit was switched on and the receiver in my car was used to checked it was operational and all systems working. The unit reported position, altitude, atmospheric pressure, payload temperature and battery voltage. All parameters where checked and normal. APRS normally will allow you to see the track on the Internet, but we were too far away from any receivers to register. That would only happen when the flight was high enough for the distant receivers to “see” the balloon – once it was high enough to overcome the radio shadow caused by the curvature of the earth, allowing “line of sight” radio signals to be heard. Similarly when we landed, we would lose the signal close to the ground. We were going to rely on the receiver in our car to pick up the transmitter signals and read the location. This would be super important in a couple of hour. More on that later. The photo at right show the transmitter with one layer of bubble wrap. Two more were added with the GPS receiver wrapped to the top – above the side that you can see the unit with care taken to get it the right way around.

UpLift-1 CapsuleThe camera batteries were charged the night before and the camera then required special care. We had it in a sealed box with desiccant overnight to ensure that there was as little moisture as possible in the camera. This would otherwise cause condensation during the flight and fog the images. It was inserted quickly into the housing and the almost closed housing was flushed with helium from the filler hose. This ensured that water in the air was removed and the housing was sealed. The camera was turned on and set to commence taking photographs – the counter on the front began incrementing every 30 seconds. Both the camera and the transmitter were mounted in the capsule. The picture shows the camera in place secured with blocks of polystyrene  and the transmitter in place with the GPS receiver at the top. The payload bay was covered and sealed with duct tape and the capsule was ready to fly. All that waited was to fill the balloon.

UpLift-1 Balloon FillWe had brought a large bed sheet to hold over the balloon in case the wind was too strong for a simple fill. The wind was light and we did not need this, but if we had we would have asked volunteers to hold each corner down while we filled the balloon. The balloon fill was simple, but we needed to measure the diameter to get the fill right. If we under filled the balloon then it might never burst or even rise fast enough and drift long distances before popping. Either way I had made a decision to lighten the payload UpLift-1 measuring the diameterby leaving out the video camera and to overfill the balloon slightly. It was, from the manufacturer’s specifications meant to be 1.2m (3.937ft) in diameter.  I was going to fill it to 1.35m (4.43ft). Since the day was sunny, it was easy to accurately measure the diameter. We simply used a tape measure across the centre of the shadow – perpendicular to the rising sun. This meant that any stretch of the shadow from the angle of the sun would not affect the measurement. In the picture at left you can see that the sun is behind me and Jason is in the right place. The local that was helping just needed to move the measure up closer to the camera to get the final measurement (the photo was a few seconds early). We had the right diameter now and were ready to remove the hose and secure the payload. The helium tank valve needs to be shut off at this point in case the hose gets pulled and the tank either topples or adds more helium to the balloon. If the tank falls, then you could damage the regulator.

This next operation was the most difficult part of the procedureUpLift-1 Securing the neck and the payload. We had already wrapped a cable tie in duct tape to lower the chance of tearing the balloon when inserted. it would secure the nylon cord that secures the parachute and payload. First though, we needed to cut away the cable ties securing the balloon to the hose – all without cutting the balloon. The protective duct tape was peeled away and side cutters were used to sever the heads of the cable ties. This kept sharp edges away from the balloon. That is me on the right cutting the cable ties away (sorry no close-ups). Once the hose is removed then the balloon needs to be sealed and secured. I have no photos of this but the fill tube of the balloon is folded once and then a second time (4 folds thick). The cable tie with duct tape that was prepared earlier was inserted in the middle of the bottom folds ready to secure the payload. I then secured the balloon and and its UpLift-1 ready to launch with help from the locals at Rankins Springsgas with three cable ties above that making them tight around the fill tube. It must be tight to keep the gas in during the flight, especially as the outside pressure gets down to a few percent of sea level and the inside pressure remains the same. I cut the loose ends of the cable ties and used duct tape to keep them from touching the balloon. The cable tie that secured the payload was looped and the payload tied to the balloon. Again duct tape was used to secure the knot holding the payload to the balloon. Nothing was left to chance. The knot used was a bowline and few half hitches – sufficient if you have the duct tape to stop them unraveling. We were ready to launch. The local mission control countdown team were assembled (all but one shy kid and a few adults) and provided the all essential countdown – that’s Wally in he green/yellow safety shirt.

UpLift-1 Launch with Jason BrandIt was a great moment. Rankins Springs’ first near space mission. The countdown proceeded with the kids leading the chant. At zero, my son Jason released the balloon and it was away. Note the old steam engine water tank behind Jason – the old and the new. At about 270 metres the distant APRS receivers saw the balloon’s transmissions and we breathed a sigh of relief that we would be able to track and recover the balloon. We saw the updates every 20 seconds on our smart phones with all the details of the flight. We watched as the balloon stayed in clear view right up to 5km. We kept losing site of the tiny white dot, but the odd reflective glint from the shiny black duct tape brought our eyes back to the tiny 1.35m (4.5ft) white dot up in the clear blue skies of central NSW.  It should be noted, that none of these photos have been altered. They are directly from a number of cameras. The colours have not been corrected! The final job was to pack the car and chase the balloon.

It was serendipity that the first photo snapped by the payload camera at around 270m (900ft) was of the town itself. A wonderful memento of the occasion.

Below is the photo from Rankins Springs. You can click on most of the photos above and below to see a large version of the image (requires that you click through an intermediate page). I have uploaded the image of the town in the highest format possible.

UpLift-1 Rankins Springs 60 seconds after launch

60 seconds after release (below). This photo looking east above Rankins Springs: