Save on Low Cost Payloads to the Stratosphere

Save with payloads to the StratosphereOFFER EXTENDED TO 21 Nov 2016

Save A$1,100 on Sending Payloads to the Stratosphere.

We are trying to fill our calendar with low cost flights to the Stratosphere so you save A$1,100 min each flight. Our minimum price is usually $3,000 carried out by the world’s most successful team. 28 flights to date.

Our flights are conducted in Australia but you don’t have to live here to have us fly your payload.

Save: Save with the most consistent team on the planet.bookings can be up to 12 months in advance, but the promotion is only valid for 2 weeks and expires on:

Midnight the 21st Nov 2016.

Book a flight for your payload and then, when we give you a price, claim and save with your discount of $1,100. This way you know that we are giving you the real deal. All deposits must be made by 22nd Nov 2016 over the counter and as usual are not refundable. We immediately order gas, book travel, accommodation and register the flight with CASA, Rex Airlines, QantasLink and others. In other words, it compensates for work and other material bought or held aside for your flight.

Commercial work starting from A $1,900

Book and save in the next 2 weeks and we will cut the basic price to $1,900. We still require $1,500 up front for the balloon, gas, labour and other costs before the flight, but you would be getting the world’s best high altitude team. After 28 flights in Croatia and Australia, HABworx has recovered all payloads

We have been helping others make the most incredible flights for amazing reasons. There are always cameras, but our customers have their own requirements. We have had signage change during flight; we have taken up 360 degree immersive video cameras, radio systems; sensors and musical noise makers.

UpLift-19 Space ChickenWe have flown payloads for :

  • Bulla Cloud9 Yogurt online advertising
  • Several record launches
  • Conservation (Karl the Cassowary)
  • Art (Sounds in the Stratosphere)
  • Science competition (20 experiments flown in Croatia)
  • Science Week education – Albury lectures tracking a live flight
  • Product launches
  • Sydney University – Science
  • Toyota Team Bonding.
Balloon Burst4 seconds after the event - UpLift-19

Balloon Burst 4 seconds after the event – UpLift-19

What you get:

  • The most consistent team on the planet – with a 100% recovery success with 28 payloads released (at time of publication).
  • Released 2 flights in Croatia
  • Working with Murdoch University and a UK University for 2 separate Mars missions that will require precision balloon flights.
  • The experience of 28 flights under our belts.
  • Difficult projects that require old and new logo reveals, multiple cameras and 360 degree photography.
  • Ground photography of the release site and in vehicle photography of the chase.
  • Drone photography of the release site.
  • We will even wear special suits and tee shirts for the project.
  • Save $1,100 per flight.

Listen to what a difference a high altitude balloon campaign can make.

Hear and see more directly from the customer!:

Below is one the individual flights.

That was me (Robert Brand – the head of HABworx) in the closing scenes picking up the payload. It was definitely frozen! We limited the height of payloads by the size of the balloon fill. This ensured that they would come down before warming in the stratosphere. There were 41 people involved for 2 days in central NSW. The projects can be big or small – it is up to you.

Contact: contact @ projectthunderstruck . com   —  remove the spaces!

Save by using a small team. The locals always take an interest.We will give you a price for your project that will make it a reality!

The price of $1,900 would be a single flight in central NSW with 2 to 3 cameras (yours!) to usually above 30Km. We provide the tracking and everything else for the flight. You can even  track the flight from your armchair at home – or come with us for the adventure of releasing the balloon and tracking the payload to a field and recovering the payload!

Email me with your flight request and finalise payment within 2 days and let us send your payload to the Stratosphere.

A Guide to Prices and How to Save

  • Basic Price $3,000: We fly your payload with our trackers – Up to 4Kg – 2.5Kg will usually get to 30Km altitude or more). We travel 6 hours drive to West Wyalong on day 1, fill and release early on day 2; recover the payload and return home on day 2
  • $1,000 for additional per day for any customer reason (excluding second balloon flight).
  • $2,000 for additional balloon flight and recovery on the following day
  • $2,000 for a second tracking team for their first flight
  • $1,000 for a second tracking team for additional flights
  • $2,000 for us to build the payload and provide cameras (GoPros) for any flights with small mascots or logos – excluding new logo reveals.
  • $1,000 for a reveal mechanism – pulls the old logo away and reveals the new logo.
  • Other work will need to be discussed and quoted.
UpLift-28 Released. Our latest flight. The customers will tell you that we saved them a lot of money compared to doing it themselves.

UpLift-28 Our latest flight. The customers will tell you that we saved them a lot of money compared to doing it themselves.

Placing a Cutdown on a Balloon (HAB)

Todd hamson directional antenna foxhuntingPlacing a Cutdown Below the Parachute

Most cutdowns are light and placed between the balloon and the parachute. This seems logical, but the biggest issue with this arrangement is the weight of the cutdown and the size of the parachute. The bigger the parachute, the more likely there will not be an issue.

In recent times I have had great issues with the balloon not exploding cleanly. Five balloons this year have had massive twisting issues and that alone can collapse a parachute as the cord between the payload and the parachute twists and causes issues as it tends to make the cord shorter as it twists up.

One balloon burst without shedding any material and with the 1.6kg balloon and the weight of the cutdown, there was nearly 2Kg of mass pulling the top of the parachute well to the side. The payload hit the ground at about 60kph (35mph). This damaged one of the trackers and almost left the payload without any way of locating it. Luckily a second tracker half survived and we were able to locate it even though it was not sending GPS co-ordinates.

The picture above shows the result:  That is my good friend Todd Hampson helping us track down the lost payload. It was transmitting, but with no GPS location. We resorted to directional location and a “beep every 20 seconds. We recovered the payload. 2 faulty trackers and we still found it. It pays to be prepared. Note, I question the element spacing on this antenna. It is made from PVC tubing and fittings and uses roll-up tape measure elements. You can fold it up into a slightly bigger PVC tube or a canvas tube. You need big attenuators like 60dB and 120dB to insert inline as you get closer to the transmitter. You also need a radio that has a metal case to shield direct signals from getting into the radio and bypassing the antenna.

One remedy is to use some small swivels. They are simple and can be found in fishing shops. This will help with twist on a rapid spin. You will be amazed at how fast a payload can spin when the parachute is fouled. The video below shows the fouled cute payload and its initial spin and the final impact with the ground

cutdown configurationAs I said, most payloads are placed above the parachute. My recommendation is below the chute. This increases the stable loading and decreases any unstable loading that can collapse the chute. The picture below shows how and independent cutdown should be placed. A longer line may be needed if the payload and the parachute are further apart and the payload needs connectivity to the link to the ground. I suggest a swivel and a short line to the parachute as well as a long thin multi-stranded line to the cutdown. After all any damage to the cutdown wire will be not an issue after the payload is on the way down.

There are many other ways to provide this service, but they are often less than ideal. This is the most stable way of providing the system. I suggest that the cutdown box or bubble wrap be taped to the nylon cord to prevent it from swinging around.

The small piece of Nichrome wire needs to be either twisted or threaded through the nylon. I prefer threading as it means the Nichrome wire is insulated and the heating is efficient. Other prefer w spiral around the thread. Either way, it is important that any swivel placed inline is below the cutdown box or above the cutdown Nichrome wire. Very important.

The reason is that any twist on the way up will cause issues and this is more likely if the swivel is between the cutdown Nichrome wire and the box with the electronics.

I would love to hearmore about your results. Let me know.

TV, You Never Know When

Croatian NewspaperTV, it Happens All the Time

by Robert Brand

As crazy as it sounds for a 12 year old, Jason appears on TV, Radio, Online and Newspapers all the time. He is also seen in other people’s presentations at space and education lectures all the time.

We were flying to Frankfurt earlier this year and I spotted a newspaper being read a few seats further up and saw a balloon story and few familiar faces in the pictures, including Jason’s picture. Yes, it was another story about our balloon flights to the Stratosphere in Croatia. It seems that Jason is getting noticed all over the world, but is not so well-known here in Australia. In fact Jason has been on TV more in Europe than Australia.

I expect that the success of Project ThunderStruck will change that. I asked if I could snap a picture of the newspaper article and that is it top right on this page and a bigger version at the bottom of the page. Both Jason and I are in the photos.

These are all pre-ThunderStruck days, but it might help with the credibility of Project ThunderStruck to know that Jason indeed has the skill set to make this a reality and he has demonstrated a commitment to the work and the science.

I just did a search of videos and discovered more stories about the Croatian balloon flights and more video of Jason and I. the video below is from a Croatian TV show called Briljanteen and shows the background to the flights, the preparation and one of the experiments conducted on the flights. I believe Australia gets a mention in the video, but since I do not speak Croatian, I do not know what they are saying!

I also found a video made from photos taken during our visit to the Croatian President. He wanted to meet the Australians that flew the University payloads to the stratosphere. It was also an opportunity to brief the president on the work of team Stellar. We even brought a model of a lunar rover.

Below is a picture of Jason meeting Croatian President Ivo Josipović

Jason Brand Meeting the President of Croatia - President Ivo Josipović

Jason Brand Meeting the President of Croatia – President Ivo Josipović

Below is the enlarged picture of the newspaper article that I spotted:
Croatian Newspaper

 

Lessons from UpLift-20

Weather balloon burst

What a burst weather balloon should do! Disintegrate

UpLift-20 Lessons Learned the Hard Way

Jason, our 12 year old pilot for Project ThunderStruck is no stranger to having to prepare for the worst and it is what we do every time we send up a payload on a high altitude balloon. Our last flight of a balloon into the stratosphere was a case of just that. Two failures. One on launch and the second on decent. Each problem would be enough to cause most balloon payloads to be lost, but as part of our preparations, we carried two trackers for the one flight. This was a flight in preparation for our project and we are testing. We have had to cover our payload in the video. Our apologies.

Below: An artist’s view of the ThunderStruck aircraft under a zero pressure balloon (more on that another time) at 40km altitude. You may have guessed, I am the artist….. Note that on the ThunderStruck event, we will not be using weather balloons so there will be no unexpected explosions.

Balloon Flight with ThunderStruck

Failure One

The first failure was totally invisible to us. A massive downdraft. The first that we have ever encountered. Uplift-1, our first flight, started in an updraft and it rose at an incredible rate for the first kilometre. In the video below, you can hear me make the comment that there did not appear to be the lift that we knew we had because we had used scales to measure the lift. We could not feel the downdraft pushing the balloon down 15 metres above our heads. I mistakenly thought my lack of “feel” was because of the others also holding the payload. We released the payload and balloon and then our hopes sank as the payload only lifted slowly and then sank back to the ground. We ran to catch it, but it rose again and caught on the edge of the eve of the roof of a nearby wheat silo. It stayed there for only 2 minutes, but it felt like an eternity before it released. It rose quickly as calculated, but one tracker had had its GPS unit disconnected and the other had its antenna twisted 90 degrees effectively lowering the power considerably. None the less we could still track the flight – mostly.

One tracker disabled, but still sending its ID at full power, The other effectively made to look low power. Those GoPro cameras are great. hundred of metres above the ground you can hear (faintly) people talking and a dog barking! They make great gear.

Failure Two

The weather balloons are meant to explode and disintegrate. This one did not. The entire balloon, well over 1Kg fell into the parachute and tangled itself in the chute, effectively making the mass look like more like a tangled flag than a parachute. It slowed the payload in the thick air, but the fall from its maximum height was rapid and the entire fall from 30km only took 15 minutes. This was an average speed of 120kph. Given that the payload probably hit the ground at 30 to 40kph, the initial speed was probably close to 400kph in the thin upper air.

With the tracker only giving us effectively a poor signal, the last track that we received in one of the vehicles headed to the landing site was 2 km above the ground making the landing site potentially one square kilometre.  We also fond out later that the second tracker was never going to give us a signal, because the impact had caused a battery to eject from its holder. We only had one ID every 20 seconds and no GPS location! We used a directional antenna to lead us to the payload, but it was a slow and painful task.

The video below shows the impact and the wooden spars breaking. The camera continued to record! Nothing like a good wiring system to ensure that power kept flowing from the external battery. I did not mention that we use external batteries. The GoPro’s batteries, even with the additional power pack, just do not last for the entire flight if it goes over 2.5 hours and especially if it is taking both videos and stills – The new GoPros are amazing, but need more power for High Altitude Balloon (HAB) flights.

Initially the video above shows the incredible stability of our payload at 30km altitude. The Balloon explodes at the 30 second mark and then plummets and spins at a sickening rate of a  couple of times a second with the disabled chute causing the spin.  At 1 minute 45 seconds, we cut to an altitude of about 3km and it took 3 minutes to hit the ground at 60kph. At the 4:45 mark, the payload hits and spars shatter. The camera keeps recording. By the way, the big tree lined road is the Mid Western Highway. The payload was kind enough to land in a sheep paddock beside the main road. You can’t ask for better.

The Lesson

The lesson here is that if it can go wrong, it will go wrong. Yes, we have recovered every payload that we have sent up, but good preparations both in the payload design and build is important as are the preparations for recovery on the ground. We even carry poles to remove the payload from trees. We can manage 14 metre trees. After that we will have to look at other methods.

Our preparations will be backup, backup and more backup. Redundancy rules over weight considerations where possible. Systems will be over-engineered and more care will be taken than what appears necessary. Project ThunderStruck will fly while the world watches. Delays will be unacceptable. This was UpLift-20 and again we have 100% successful recovery rate. @0 flown and 20 recovered. As our flights become more aligned to the actual shape of the ThunderStruck aircraft, speeds will dramatically increase on decent and the videos will have way more interesting stuff to show, but these lessons were there to remind us not to get complacent.

UpLift-19 Video and Pictures

UpLift-19 Media and Information

This is an unedited video and still video images from a GoPro3 Black edition camera of a weather balloon payload area. It climbs to 33.333Km where the balloon bursts and the payload free-falls back for recovery. It was a commercial flight fo Clintons Toyota, Campbelltown, NSW, Australia. They also sponsored a non-commercial payload for Project ThunderStruck – our first test for the Project for a supersonic glider to break Mach 1.5 (1,800kph / 1,120mph)

http://projectthunderstruck.org

The so called Space Chicken, frame and with the parachute deployed, it reached a top speed of 400kph / 250mph. At the 12 minute 14 second mark on the video (2 hours into the flight) there is a noticeable jarring of the payload and a small pop. This is the balloon exploding. Immediately shredded balloon hits the payload as there is virtually no air to slow it. 2 seconds later, the payload tilts showing the cloud of shredded balloon About 1 minute into the free fall we reached 400kph according to the telemetry. The drag increases at lower altitudes, so the effect of the wind is worse as it descends. It then improves as the air density increases. In the seconds after release you get to glimpse the balloon shreds rocketing into the payload from the explosion and then the cloud of shredded material in the sky. About 10 seconds later there are glimpses of the blue and white parachute not doing much during the fall due to the low air resistance. The cutdown box that is placed above the parachute actually fouls the parachute slightly during the free fall before it becomes effective at slowing the payload. The fouled parachute causes spin at the faster speeds. The video finish with the payload still well above the clouds. This was UpLift-19 by Robert and Jason Brand for Clintons Toyota.

PS, notice that thin blue line in the video and the photos? That is all the atmosphere we have and that is pretty thin near the top. 72 percent of the atmosphere is below the common cruising altitude of commercial airliners (about 10,000 m or 32,800 ft)

Jason and Robert Brand setting up the cameras on UpLift-19

Jason and Robert Brand setting up the cameras on UpLift-19

 Balloon-Burst1-seconds-after-the-event-UpLift-19

Balloon-Burst1-seconds-after-the-event-UpLift-19. Those are the shreds of the balloon.

Balloon Burst3 seconds after the event - UpLift-19

Balloon Burst3 seconds after the event Note the cloud is getting smaller as the thin air slows it faster. – UpLift-19

Balloon Burst4 seconds after the event - UpLift-19

Balloon Burst4 seconds after the event – UpLift-19 – yes, that is the sun.

Balloon Burst5 seconds after the event - UpLift-19

Balloon Burst5 seconds after the event – UpLift-19

Balloon Burst6 with Parachute in view seconds after the event - UpLift-19

Balloon Burst6 with Parachute in view seconds after the event – UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds - UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds – UpLift-19

Balloon Burst8 - Speed has slowed, but drag is greater in the thickening atmosphere - UpLift-19

Balloon Burst8 – Speed has slowed, but drag is greater in the thickening atmosphere – UpLift-19

Note: The images above are from the High Definition Video, not still images. The quality of our camera work has increased dramatically with some improvements to our methodology.

Air Pressure, Altitude, Balloons and Rockets

Weather Balloon BurstAir Pressure and how it Affects Balloons and Rockets

By Robert Brand

Rockets

One of the big issues for rockets flying to space is the air pressure it must climb through. As a rocket climbs it gets faster and has to push more air out of the way. As it goes higher the air thins and you can see from the table below that it is exponential. Have a look at the 1/100th  fraction of one atmosphere below and you will see that the atmosphere is 1% of sea level. The change is not linear. The atmosphere thins to a tiny percentage at twice that height, but at half the height it is 10% of the sea level pressure.

NASA says: The velocity of a rocket during launch is constantly increasing with altitude. Therefore, the dynamic pressure on a rocket during launch is initially zero because the velocity is zero. The dynamic pressure increases because of the increasing velocity to some maximum value, called the maximum dynamic pressure, or Max Q. Then the dynamic pressure decreases because of the decreasing density. The Max Q condition is a design constraint on full scale rockets.

fractionof 1 atmosphere (ATM) average altitude
(m) (ft)
1 0 0
1/2 5,486.3 18,000
1/3 8,375.8 27,480
1/10 16,131.9 52,926
1/100 30,900.9 101,381
1/1000 48,467.2 159,013
1/10000 69,463.6 227,899
1/100000 96,281.6 283,076

The Falcon9 reaches the speed of sound at 1 min 10 sec into its flight and then reaches Max Q just 8 to 13 seconds later depending on speed,and air pressure variables. Unlike airplanes, a rocket’s thrust actually increases with altitude; Falcon 9 generates 1.3 million pounds of thrust at sea level but gets up to 1.5 million pounds of thrust in the vacuum of space. The first stage engines are gradually throttled near the end of first-stage flight to limit launch vehicle acceleration as the rocket’s mass decreases with the burning of fuel.

Want to know more? This is not full of maths, just some fun stuff about Max Q and reaching orbit.

Balloons

Well for balloons we have a different issue. Balloons have to displace their weight in gas in the atmosphere and that includes displacing enough gas for the weight of the payload too.

Rate of Climb - Fall vs TimeThe climb to maximum altitude for the most part is linear. I discovered this when analysing the stats from my first balloon flight. It was linear until it reached the point that the balloon exploded. If you launch a balloon that does not explode, it will slow its climb and then float. My best guess is that as the climb becomes more difficult due to the air thinning thus and thus the displaced gas is getting closer to the weight of the balloon and payload, but the air resistance is getting less. The size of the balloon is also increasing with height and has to push away a greater volume of air to climb, but the number of air molecules in the increased mass is way less. All up it produces a fairly linear climb. The graph (left) from uplift-1 shows he linear climb and the exponential fall with the parachute deployed. For the parachute, the air gets thicker as it falls and thus slows more as the altitude decreases. Note the initial glitch was caused by a strong thermal just as we let go of the balloon. Once out of the thermal the climb was very linear. It is obvious when the balloon burst.

Altitude and Air PressureAnother view of th same data is shown on the left from UpLift-1’s flight. Note that the rate of climb is linear, but increasing slightly. This would be affected by balloon size and fill amount. The rate of climb may be fast, slow or medium, but that will also change the rate of change of the volume. Not all graphs are the same, but they tend to be similar. Note also that the size of the parachute needs to change with the weight of the payload. The ideal speed for the average payload would be about 5mto 6m per second at the landing altitude, thus landing at Denver, Colorado, USA will require that you make the parachute a little bigger since it is nearly 2Km above sea level and the air is noticeably thinner.

There are good fill charts on the web allowing you to calculate the size of balloon and the amount of Helium or Hydrogen to determine the altitude at which the balloon will explode. More on that another time. The picture at top of page is a weather balloon exploding at altitude.

All up, air pressure can destroy a rocket if its speed is too great and it will destroy a weather balloon if the air pressure gets too low. Both rely on understanding the effects of air pressure, but the dynamics are totally different.

Too finish off the post here is a video of a balloon burst. They are spectacular, especially as the balloons grow to a huge diameter and fill the screen of most wide angle GoPros!:

Apollo Heritage – A GLXP Hangout

Apollo 11 45th Anniversary Hangout - Apollo Heritage and the GLXPApollo 11 45th Anniversary Hangout – Apollo Heritage and the GLXP.

Well the Apollo Heritage Hangout event is over and I had a lot of fun with the interview or should I say “armchair chat”. It was a very comfortable discussion. I am excited to tell you that there is a video of the event. It was recorded and the link is below. I must say that I am very taken with Dr. Pamela L. Gay (the host) and her interview style. I was never left with a feeling of “what will happen next”.

I was on the Apollo Heritage Hangout with Derick Webber, one of the GLXP judges and an easy to get along with type of guy who was also around during the Apollo era. He is also Director, SpacePort Associates. Author of “The Wright Stuff: the Century of Effort Behind your Ticket to Space” and much more.

So without any more chatter, click on the link below and settle in with a drink and enjoy the fun.

Please connect with out team – Team Stellar: http://teamstellar.org/

About Robert Brand:

Works for; and shareholder in a Communications and Aerospace company called PlusComms:

http://pluscomms.com/

Head of the Communications, Tracking and Data Division in Team Stellar.

Worked in Communications support for about 100 NASA and US military space mission and several ESA mission. Stationed at the Parkes Radio Telescope in comms support for the NASA Voyager flyby of Uranus and Neptune and ESA’s Giotto mission to Halleys Comet.

Robert regularly launches stratospheric balloons for both commercial work and scientific research. Some of the commercial flights are supporting space research for universities and private companies. The work is done through his company, PlusComms. He has launched 18 flights and recovered all 18 payloads. He will soon be building drones with supersonic capability (gravity assist).

 

Robert Brand – Speaker

Robert Brand Speaking at Spacefest VI 2014

Need a Speaker for that Special Dinner?

Want a passionate and entertaining speaker for your event? Someone that motivates, tells a story with enthusiasm and clarity, someone that has done it all!

Robert spoke at Spacefest in Pasadena, Ca in May 2014 and received comments such as “that presentation alone was worth the cost of registration”.

Twitter messages continued for weeks after the event. This one from @cybernova: Reminiscing on how incredible the 3D images of Mars and the lunar landing looked. Huge thanks to @robertbrand for putting that together! – 29 May 2014

So why the excitement? Robert is a skilled presenter who speaks about topics ranging from Space to Inspiring kids to think big.

Robert presenting in CroatiaYes Space! Robert is one of Australia’s leading space entrepreneurs and building space services and some a space craft. At the age of 17 he even worked on the Apollo 11 switching centre in Sydney that brought the world the feed of Neil Armstrong’s first steps on the moon. Since then he has worked in supported most of NASA’s Apollo missions, Skylab, Voyager and was stationed at the Parkes Telescope for ESA’s Giotto probe to Halleys Comet.

Robert worked in Communications for these space events, but at the age of 59 migrated quickly into the Space sector, making an instant hit world wide. He has appeared many times on ABC Radio on such shows as Linda Mottram’s Morning Show in Sydney (702), Richard Glover’s Drive (702) The Science Show, Radio Australia’s Breakfast Club and many stations around Australia.

ABC Radio’s Linda Mottram: Robert Brand’s expansive vision for Australia in aerospace is inspiring and exciting. He has the kind of energy and vision that could easily make Australia a leader. How starkly it contrasts with the mundane pronouncements from political leaders that leave so many of our best brains running for the door.

Internationally he has appeared on Radio in the UK, The Space Show in the US and This Week in Science (US). He has also had many TV appearances in Australia commenting on current space matters.

Robert speaks regularly at Spacefest in the US where he competes for a speaking spot with space experts from all over the world. He has spoken for the last 3 consecutive years on the same program as Apollo astronauts, mission controllers, planetary scientists and the key note speakers like Prof. Brian Cox (UK) and Dr Carolyn Porco. He has also spoken at ISDC and space conferences throughout Australia as well as Engineers Australia. The video below shows Robert and his son Jason (12) in Croatia launching balloons and being interviewed on Croatian TV. Robert is not just someone that did something great in the past, he is pushing forward into new and amazing frontiers.

Robert’s subjects although they appear mainly science and space oriented; include:

  • Motivating youth to achieve their goals
  • 3D slide presentations
  • Using Social Media to accelerate career change
  • Thinking outside of the box to stimulate new ideas and create change when budgets diminish
  • Wild Sports. Diving with sharks, cave diving, flying ultralights, gliding, climbing, abseiling, etc
  • Stratospheric balloons – 19 successful flights and recoveries – breaking records.

His presentation slides are mainly original material from many of his exploits, balloon and space work, but he does not repeat any text from the screen. His presentations are all about natural speech and because “he knows his stuff” he talks effortlessly to engage the audience.

Robert and Jason presenting in CroatiaHe sometimes speaks with his 12 year old son Jason. Jason is an accomplished speaker and demonstrates how a young mind can grow when not limited by normal constraints. Jason will be attempting to break the sound barrier with a Radio Controlled aircraft in the next 12 months. He will fly it as if he is in the cockpit using a video radio link and home built equipment all of his design.

Jason has spoken at Engineers Australia with his father and in front of 100 scientists in Croatia.

Robert Brand’s speaking fees are $3,000 for a dinner, lunch or breakfast engagement in Sydney. Other cities or engagements will need to be subject to a quotation.

As an introductory offer, for 2014, his standard fee, if booked direct, will be 50% off.

$1,500

Robert’s style is passionate and energetic and he moves and gesture a lot. Boring is not in his vocabulary. He sometimes challenges the audience so there is usually a bit of interaction. He also uses the occasional prop. A cordless microphone is preferred. A projector and laser pointer are essential and he must use my own PC if doing a 3D presentation.

Balon Stellar - Stratosfera 30km and RoverRobert is also the head of the Communications, Tracking and Data for Stellar – a space company sending a rover to the moon in the next three years. Jason is the Australian Student Representative. Together they travel internationally to talk about Space and to launch Stratospheric Balloons with student payloads to help stimulate space science in those countries. They have just returned from Croatia.

Robert will speak at “no cost” or a cost recovery basis on occasional Radio and TV interviews as well as presentations for small associations, not for profit groups and student focused groups. Simply ask.

Call +61 448 881 101

Robert and Jason presenting in Croatia

UpLift-1 in the Sydney Morning Herald (Archives)

Sydney’s very own space agency: Brand and son

*** Recovered from the Archives ***

This excerpt from the Sydney Morning Herald, January 16, 2012. UpLift-1 in the Sydney Morning Herald

Sydney’s Space Agency

Sydney space enthusiast Robert Brand, with the help of local school students has built and launched a weather balloon a quarter of the way to space.

Sydney space enthusiast Robert Brand and his 9-year-old son Jason recently launched a high-tech weather balloon a quarter of the way to space, retrieving images and flight data to help school children get a better understanding about space.

Mr Brand, of Dulwich Hill, has a history with space – at age 17 he wired up some of the Apollo 11 communications gear in Sydney during his term break from college. He was also stationed at the CSIRO Parkes Observatory in New South Wales at the request of the European Space Agency for spacecraft Giotto’s encounter with Halley’s comet in 1986 and Voyager’s encounter with Uranus and Neptune in 1986 and ’89. Also under his belt is an award from NASA for support of STS-1, the first orbital flight of the Space Shuttle program, presented personally by the commander and moon walker John Young.

So when it came time for Mr Brand to launch his own gear towards space he was well prepared, documenting his do-it-yourself journey on his personal blog wotzup.com for other space enthusiasts to watch and track.

Jason and his father Robert celebrate retrieving their weather balloon, which captured data and images on a mission a quarter of the way to space.

Jason and his father Robert celebrate with ginger beer (soda/soft drink) after retrieving their weather balloon, which captured data and images on a mission a quarter of the way to space. Photo: Supplied

“[The balloon launch] was being done to help science education in the Sydney area and anywhere else in fact because we were publishing [on the internet] all of the information and data that we got from the balloon launch,” said Mr Brand, 59.

Launch day was December 28, 2011 from Rankins Springs near Goolgowi in Central NSW. As the balloon got up to about 85,000 feet (25.9 kilometres) above Earth before it burst, Mr Brand and his son tracked it using amateur radio.

“During the flight we were actually relaying data back to the ground and off to a server and that allowed people from all over the world to actually participate with this flight and track it as it was going,” Mr Brand said. “We were getting back a lot of comments on some of the social media [services] such as Facebook just really helping us understand what they were sort of getting out of the whole project. People were sort of yelling loudly if you could put it that way, on the [wotzup] website claiming ‘Hey, they’ve reached this height and that height’, and so there was a lot of really great audience participation in this.”

Robert and his son pump the weather balloon with helium before launch.

Robert and his son pump the weather balloon with helium before launch. Photo: Supplied

The data being sent back from the balloon – which was later recovered about 50 kilometres away from where it was launched – tracked altitude, position, rate of climb, payload temperature, payload voltage and air pressure, Mr Brand said. The balloon also has a camera on board that captured still images. “We could actually see as [the balloon] hit different wind levels in the atmosphere and eventually we got up into a jet stream and actually found that we had two jet streams,” Mr Brand added.

When the balloon finally popped it came hurtling back towards Earth at about 40 metres per second, according to flight data.

“So this thing was falling a bit like a brick would fall at ground level but it slowed down and eventually the parachute dropped it on the ground at about six metres per second,” Mr Brand said.


The view from 10,666 metres, the height at which commerical jets will normally fly at.

Photos from Robert and Jason Brand’s weather balloon flight

The view from 10,666 metres, the height at which commercial jets will normally fly at. Photo: Robert and Jason Brand

  • The view from 10,666 metres, the height at which commerical jets will normally fly at.
  • The view from 21,977 metres.
  • The view from 22,222 metres.
  • The view from 22,470 metres.
  • The view from 22,969 metres.
  • The view from 24,305 metres.
  • The view from 26181 metres.
  • The view from 300 metres.
  • The view from 3235 metres
  • The view from 4153 metres.

The balloon (payload) was put together with the help of senior students at Sydney Secondary College at Blackwattle Bay, who Brand sought to get involved with the project and tasked them with doing a whole stack of materials testing. They tested the Styrofoam and how it reacted in zero atmosphere as well as the glue, ensuring it would hold throughout the flight. “The students were putting these materials in a bell jar and sucking the air out of it . . . and checking all of the materials held together – and to protect some of the electronics from the very cold temperatures of about minus 50 Celsius we simply used bubble wrap. … You’d be surprised to know that bubble wrap doesn’t explode when it gets into pretty much zero atmosphere.”

What's in the box? Jason shows the weather balloon's payload.

The photos that came back from maximum altitude look “pretty much like that taken from a space shuttle”, Mr Brand said.

“So very dark skies looking at this very thin blue line around the Earth which is our atmosphere and protective layer. It’s a bit scary when you see that photo and realise how thin the Earth’s atmosphere really is.”

Picture right: What’s in the box? Jason shows the weather balloon’s payload. Photo: Supplied

When it came time to recover the balloon it was tracked to landing on a field near the small town of Weethalle in NSW, Mr Brand said. “There was nothing growing on it. It seemed to have been abandoned.”

After knocking on a farm door to no avail, he and his son entered the field to locate the balloon. After driving “pretty much right on top of it” it was recovered, allowing for the father and son duo to publish the photos it captured that weren’t sent back live but stored on the camera attached to the balloon.

Mr Brand hopes to do more balloon launches and get schools involved.

“I’ll keep doing this each year and trying to get . . . more interest in the school year earlier in the year. I’m very keen to hear from people that might be interested in getting involved.”

End of article: UpLift-1 in the Sydney Morning Herald

Australia Enters the Space Age – History

wresatAustralia’s WRESAT 1967 – History

Weapons Research Establishment Project: WRESAT

Not WotzUp, but a good bit of Australian History. Some Australian Space history for those interested.

On 29 November 1967, Australia became only the fourth country – after the USA, Soviet Union and France – to launch its own satellite from its own territory.

The battery-powered WRESAT weighed about 45 kilograms and was designed in the form of a cone. Three cones (two test and one actual) were constructed in the development phase, and a range of tests were carried out to ensure the satellite’s durability. As well as the durability tests, the final experiment tested the ejection of the protective plate covering the instrumentation during flight. In the early days of rocket and satellite work, countless experiments were lost due to the failure of covers to eject.

The scientific instrumentation carried by WRESAT followed on from previous upper atmospheric research that had been conducted at Woomera using sounding rockets. Among other things, WRESAT’s sensors and detectors measured solar radiation and its effects on temperature and composition of the upper atmosphere. The satellite was able to collect atmospheric information covering the high latitudes of the northern hemisphere and the mid-latitudes of the southern hemisphere – areas where measurements hadn’t previously been taken.

wresatHaving arrived at Woomera from Orroral Valley, and after some final checking and testing of experiment instrumentation, the satellite was transported to its launch vehicle. Reportedly the American team was horrified at the sight of WRESAT bumping around in the back of an open truck. The Australians argued that if it couldn’t withstand the short ride, it was not likely to withstand a lift-off. By launch stage, the rocket had been painted white for ease of tracking.

This sequence of the film is actually a bit misleading. The launch was originally intended for 28 November 1967. The six-hour countdown commenced on time, but was aborted 30 seconds from zero due to the failure of a heating-cooler unit to eject. So although the launch, which took place successfully the following day, was historically very significant, very few dignitaries were there to witness it. During WRESAT’s orbiting life of 42 days, it went around the world 642 times and transmitted scientific data on 73 of them, until its batteries were exhausted.

Stellar Launch Rocket

WotzUp Update (Archives)

Stellar Launch RocketWotzUp Update

*** Retrieved from Archives ***

Published March 25th 2013

Team Stellar

It is full steam ahead with a range of activities. The biggest one of all is the risk assessment of the navigation systems and choosing the system that best fits the mission. As for that activity, usually a risk assessment is done of a mission plan, we are changing that to be the other way around – developing a mission plan after we chose the navigation systems. Having said that we would like to land somewhere historic to be able to visit some amazing leftover systems like Apollo sites or other landers.

We do have one favoured site where man walked on the moon, but we are yet to see if the navigation capability supports the mission. NASA have a “No Go” zone around some of these sites and also do not want rocket exhaust too close to their site so it will be a long haul for our little rover if we do visit.

As well as the everyday navigation available to anyone, I am looking at developing my own ideas about a novel system to give precise distance to our landing site and an exact speed. This will enable us to be very efficient with fuel. It will be interesting to see if we can construct a system to achieve this and thus need a very good secondary system. More later…

Some of my radio broadcast have focused on Team Stellar. Stay tuned.

kicksatKickSat

Seems that our KickSat will be launched later this year. Some good news on that front and I have a prototype of what will fly – lots of updates soon.

Better still I have been taking pictures from the ISS with EarthKAM – WOW. Lots of photos of Australia and if you students in high school can get your science teacher across this, you too can take your very own ISS photos. Read more below.

EarthKAM

ISS EarthKam Coopers CreekDid you know that there is a 12 MegaPixel camera on the ISS that students can control and snap photos from space? All you need to do is get your science teacher to sign up to the site and get an allocation of photos for students to take pictures of almost anywhere on Earth. More in a future article, but to get you going, here is a photo taken by my good friend David Galea (a Melbourne Science teacher) of the Exmouth area in Australia.

Note I have not checked whether these photos are north up or North down and sorry, but I don’t have the time.

and below another one of David’s photos of the Kakadu Area

Like around New Orleans in the US, you can see how sediment from this river has extended the river mouth out to sea.
In the News

Linda mottramLinda Mottram Sydney ABC 702 Mornings

It seems that Australia’s new space policy about to be tabled may not suit everyone and especially entrepreneurs like me. I personally want to see more funds for space and to make sure our brilliant minds graduating from university have somewhere in this country to actually work and not be lost to other countries.

Because of that I have engaged with several groups and I am hoping that we can develop a common narrative so that the general public and the media will know our desires and capabilities in the space sector.

I have been on many programs, but two in particular in Australia – One in Melbourne with a panel to discuss the issues and one on ABC radio in Sydney where I discuss the issues and also Team Stellar. Links to those broadcasts shortly.

http://www.abc.net.au/local/audio/2013/02/21/3695429.htm

On another note I made it into a Croatian TV show all about Team Stellar!! My piece was videoed in Abu Dhabi during the first Team get-together in December last year.

Public Speaking

I start professional Public Speaking gigs soon and it will be all about SPACE! For the moment I will be with Ovations exclusively, but they have been slow to kick off. I will still do free talks for universities and other deserving groups for free, but I am now in an interesting area.

I have a long history supporting space missions starting at the age of 17 when I wired up some of the Apollo 11 video and switching equipment in Sydney Australia back in June 1969. I supported most NASA missions from then to 1986 and that included communications support for NASA’s Apollo, Shuttle, Voyager and other missions. Also ESA’s Giotto Mission to Halleys Comet.

But the real interesting stuff is that I am involved in current space missions. Team Stellar’s lunar mission within the next 2 years and the UK’s Median experiment scheduled to touch down on Mars in 2020 (lots of green lights to get past) plus all the other great space stuff like EarthKAm and KickSat

If you want to get me to speak at your event go over here and you can book me:

http://www.ovations.com.au/speakers/robert-brand.html

I can promise you lots of great photos, the odd video and an amazing tale of being at the heart of so many incredible projects. I am also very animated. Don’t expect me to stay still when I get so excited about the subject. I also have a great tale about changing careers from Telecommunications to Aerospace!
UpLift Videos

I have completed a number of UpLift flights that were commercial. Since our first flight in December 2012, we completed 14 flights and 13 were commercial. We recovered all 14 payloads for 100% success rate. We are also available for commercial payloads with prices starting at $5,000.

Here is one video for a frozen Yoghurt company – we froze the yoghurt in the clouds!!

HAB / Weather Balloons

We sold the 20 x 350g weather balloons that I bought in November last year. They sold out within a month! I have tried to get more balloons, but no luck.

Andrea Guzmán

Just got a Skype message from Andrea Guzmán from Columbia. I encouraged her to not only follow here dreams but to take action. I interviewed her recently and she had done so well. Now she seems to have even done better and so fast. This interview from June 2011.

Andrea Guzmán: Hey Robert. Long time no talk to you. Hope you’re Okay. Let me tell you I’ve done very interesting stuff so lately. I earned an internship in Mexico, I was there a whole month working at the 1meter Telescope.
Robert Brand: Wow – great work!
Andrea Guzmán: Now, im working with the second colombian satellite and well, everything is going just great
Robert Brand: Living the dream !!!
Andrea Guzmán: just wanted to let you know, as you have been also my mentor 🙂
Robert Brand: It is one thing to Dream, it is another to make it happen! One day we will meet!
Andrea Guzmán: I was actually applying for a workshop in satellites in Australia. Let’s wait and I’m sure we will meet someday.
Robert Brand: That will be fun. Lots to see if you are here!
Andrea Guzmán: sooo… thanks a lot to have confidence in me, without even knowing who I was
Robert Brand: It is easy to see who will make and who will not!
Andrea Guzmán: Thanks Robert 🙂

Wow! Things seem to be going great for Andrea and I want to remind everyone that you HAVE TO TAKE ACTION and not just dream. I encouraged Andrea to follow her dreams with action and she would have done this without my help, I am sure! It is, none the less, a great example of success through hard work.

Jamesburg in a Movie (Archived)

Battleship (2012) uses Jamesburg Earth Station (graphically).

*** Retrieved from Archives ***Posted on by

My company is currently looking to buy Jamesburg Earth Station with a view of using it as part of a deep space network. Sure Jamesburg Earth Station is not the only dish with this design, there are two others. One still in use in South America and another somewhere in the US – possibly Alaska from memory. The identical AT&T sister dish on the east coast was demolished many years ago. Jamesburg, however is the most well photographed and documented of the remaining dishes and thus attracts attention.

Jamesburg in a Movie

I was watching a movie set in current times in Hawaii (Battleship) on the weekend and was surprised to see this very early dish design from 50 years ago being used to contact aliens from a distant star system. It was hard to concentrate on the movie each time the dish came into view on the screen. In fact there were three of these dishes on the island mountain top and all equipped with a very modern system to beam signals somehow to a relay satellite. Yes, the movie was technically unbelievable anyway, but this made it worse. It was also heart wrenching to see the three dishes explode at the end of the movie. Of course the dishes were graphically reproduced as were the explosions.

So how close was the reproduction. Well, extremely close. They added a box to the top of the subreflector quadropod and the base was a bit slimmer, but that was it. The staining was also identical, but emphasised in the movie. I doubt that we will ever see Ceduna, Moree or Carnarvon dishes in this way, but if one relic from the past can manage a resurrection, then who knows?

While I was visiting the Jamesburg site, a film crew was actually filming the dish for an iPad interactive game to be called “200 seconds” so we can expect to see it emerge again from the archives!

Here is a comparison and some shots from the movie:

Note that the structure on the right of the movie dish is on the original also, but obscured due to the angles

Occasionally, s

Team Stellar Appointment (Archives)

PlusComms Square LogoRobert Brand Joins a Reformed Team Stellar

*** Retrieved from Archives ***

Get the background on Team Stellar

Team Stellar is a Google Lunar X Prize contestant. This week I accepted the position of Director of Spacecraft Communications, Navigation and Data. My company PlusComms has accepted a partnering role in providing the communications for the Team Stellar moon mission. That is our new logo pictured above. PlusComms is involved in buying old Satellite Earth Stations and finding new roles for them. We expect that we will be doing this for Team Stellar.

PlusComms has a significant investment in new technology and it is fitting that the older technology also be used in the most modern of moon missions. Of course only the mechanics of the dish are suitable. The electronics, especially on the space communications side, all need to be upgraded. Many dishes are good for almost 100 years of operation if well kept.

MissionTrax CoverageMissionTrax is PlusComms Global Deep Space Network product and it should be providing 24 hour a day global coverage of the sky and space missions using both “S” band and “X” band communications with dishes that are approximately 30m in diameter.

We expect our US west coast site to be available for bookings in the next 6 months.

The diagram to the left is indicative only, but if well placed we will be even able to tack continuously in mid orbit out to Geostationary and past that to the planets.

Our US dish candidate can also track at 1 degree per second making communications with low earth orbit vehicles a reality.

Our US dish will have both Receive and Transmit capabilities. We expect it to support smaller dishes on site and a large data centre. Why am I talking about a company and its abilities in this page? Simply because it is a company built around my person push into the space sector. This website is about my personal interests and activities in space (and near space ballooning) and bringing you along for the ride. I love Do-It-Yourself space (DIY Space) and if I can do this, anyone can if they are motivated enough.

More on PlusComms here: http://pluscomms.com/space-comms/124-2/

Team Stellar

Team Stellar was an old entrant for the Google Lunar X Prize and it has slowed in its efforts to reach the moon. Recently an offer was made and the new Team Stellar arose from the ashes. This only happened ion the last couple of months. With good management and funding, it was easy to accept their offer of being involved in what will be an exciting mission.

Below is their video announcement from July this year detailing an outline of the team structure.

 

A more recent video explains the team makeup in more detail, but it was made a week ago before I had accepted the position with them.

I am pretty excited by all the potential of this team and what it has already accomplished. I will be keeping you all updated with a mission scheduled for 2 years time.

A bit more detail here: http://www.teamstellar.org