World Moon Bounce day collage

STEM/STEAM and Wotzup

Jason delivering 18 lectures in 3 days at AlburySTEM/STEAM Power at WotzUp

Good Facebook friend Peter Ellis from Canberra in Australia attended a Wireless Institute of Australia Conference in Canberra that was address STEM/STEAM and HAM radio. He posted on my Facebook page:

“AREG.org.au talked about Horus flights, etc. I mentioned your efforts”.

my response (below) sounds like I was criticising Peter a bit for singing my praises, but I was not. I just wanted a group that was there to tell their story to have a go as they have done a great job over the years pushing HAM radio and balloon flight. They were there before me and have had an exciting time with nearly 40 flights so far. The group has changed a lot, but that does not matter, the opportunity for STEM/STEAM goes

So What is STEM/STEAM Education?

STEM stands for science, technology, engineering, and math. STEAM adds in the arts. I think that we need a balance and that comes from the arts – making the rest less sterile.

The AREG guys from South Australia where there to tell the story of their contribution to STEM and HAM radio. I guess that I should have been there to tell of the work that I was doing if I had had the time. I am the one at fault and the the AREG team do not want to hear about me doing stuff too in the same area at the end of their presentation. We all love and believe in STEM or STEAM.

What does WotzUp do for HAM Radio and STEM/STEAM

Peter’s  question at the end of their talk has prompted me to let others know what my son and I do to help in this area. I put it to you as a challenge to do better and to help kids all over the world grow and be inspired.

Well first and most obvious is this website. It is a place where we post what we are doing for others to learn and make their own dreams and bring them to reality. There are other websites too, like http://projectthunderstruck.org  We really try to communicate our efforts.

As for balloons payloads / flights to the Stratosphere, I am directly responsible for 1/3 of all balloon flights in Australia at the moment and altogether 1/2 of all flights due to mentoring so many teams. This figure comes from a source in the Civil Aviation Safety Authority of Australia.

Here are a few highlights of what we are doing with STEM/STEAM. This would have been my contribution if I had had the time to attend the Canberra Conference:

In 2009 on the 45th anniversary of Apollo 11, I and another US guy put on World Moon bounce day where kids around the world spoke Jamboree of the air style via bouncing signals off the moon using 30-60m dishes. The Uni of Tas – with an old NASA dish that was in use at the time of the Apollo landing – Orroral Valley – broke world records for the smallest signal to every be bounced of the moon and decoded successful by another site on the earth. 3mW!

Echoes of Apollo? What is That? It was simply the website that preceded the WotzUp website. Because I did not own the domain name, all the stories and content are lost. None the less some of these videos survived. The World Moon Bounce Day remains one of the biggest successes of HAM Radio and STEM?STEAM The work to organise such an event was impossible to maintain, but the two years that we made it happen was amazing. 

The next year in 2010 we were given Arecibo for three days as we did it all again. World Moon Bounce day nearly became World Moon Bounce Week

World Moon Bounce day collage

gunghlin College student with the very light weight recovered payload - mainly foamJust last week Jason and I flew UpLift 29, supporting a very progressive Canberra School. It is a public high school – Gungahlin College. It was a mechatronics class and it was Australia’s first steerable parachute flight in the stratosphere. I placed 4 risk assessments to CASA for that and did it at cost for the physical stuff. The school felt I was undercharging and paid me a further $300 dollars that I pretty much donated to the Rankins Springs primary school – a regional primary school right opposite the field that we so often use. I like giving back to the community and forging a link to science and the public school seemed a good idea. We give the odd lecture at the school too.

Gunghlin College Mecgatronics Students about to recover their payload from 33Km altitude 100m away.

HAM Radio Repeaters in Central NSW

Jason and I almost got stuck on a slick and rutted road in Central NSW surveying radio towers.More STEM/STEAM directly for HAM purposes: We use so much radio that I am personally about to put a lot of radio repeaters in my balloon launch area to support the work that I do when amateur radio is appropriate. It is also to provide the local community a way of connecting to others that is not possible without the infrastructure being there. The repeaters will be solar powered and donated by me. I believe that the first will be on a small peak to the NE of Weethalie NSW and it will form a link that will cover the road between West Wyalong and Rankins Springs. It may be usable as far away as Griffith with a good yagi. The site will also support APRS contacts and transport them to the web. This will be a real asset in times of flood and fire. It will be able to support STEM activities if HAM radio support is there. I spoke to the President of the WIA about this only 4 weeks ago – Phil Wait. Phil is a friend and I worked with him some 40 years ago.

Jason Brand and Dr Barry Jones - past Science Minister

Jason and and Dr Barry Jones – past Science Minister

Junior STEM/STEAM: I nearly forgot to mention that Jason gave 18 lectures in three days when he was 10 years old – for Science Week in Australia. We traveled a day by car to Albury (and a day back at the end of the lectures). We even launched a balloon on the last day and tracked with with HAM radio APRS as he gave the lectures to students from all over the region. Some in year 12. He was in year 6 – seriously. He had his HAM radio license earlier in the year when he was 9 years old. As you can see, we are a hugely STEM focused family binging HAM radio to the community and to kids especially.

Jason’s story about Albury and the event down there is on this link:

http://wotzup.com/2013/10/jason-delivers-18-lectures-3-days/

I do not begrudge Horus getting there time in the spotlight, they are a fantastic group giving back to the community and I sure as hell don’t need the pat on the back, but the true picture of STEM work in the HAM community is not known by those in the HAM community. Just because people were not able to attend does not mean that there are not other amazing stories that remain untold. This is just one example. There are many others working hard to bring STEM/STEAM HAM radio to students. As I said, Phil at the WIA knows about my proposed my HAM radio repeater work and he is looking at a band plan to cover off on a new type of repeater configuration that will cover more than one state in Multicast mode. The WIA are currently writing a story on the Mars mission that we are doing. Making HAM radio relevant is the big deal and STEM/STEAM connects with students. Students are the target of HAM radio to stay functional. Having enough users to ensure that the bands don’t get removed for other purposes is a real self interest aspect of all of this. Nothing wrong with that so long as we all realise the self interest of STEM/STEAM and the benefits that a self interested group can contribute to. It is wonderful, the linkages work so well and provide benefit both ways – that is when things really work well.

Thanks for the mention at the conference, but no one would have a clue about what Jason and I do…

Mars Quad Rotor Test Flight Murdoch University PlusComms HABworxSTEM/STEAM events for next year include flying a 4 rotor Mars flier at 34Km altitude in a bit of a partnership with Murdoch Uni (WA). HAM radio will be at the heart of this.

http://wotzup.com/2016/07/new-mars-flight-challenge/

Sydney uni has a stratospheric blimp that also want to work with me to test at 34Km – a small version of our StratoDrone essentially. Again HAM radio.

As for the testing of the Mars Median mission, I have put it to the WIA that we may have a HF radio event to focus attention on the work Australia is doing in space. The site will be a salt lake where we are doing the drop testing. Plenty of scope for STEM/STEAM in all these events.

Like I said., Do better. I am always, always happy for others to do better than Jason and myself. We are not the high water mark, but we know that we do a lot. Tells us what you do to promote STEM/STEAM.

The Sound of Flight

UpLift-28 ReleaseUpLift-28, Please Sound Off.

by Robert Brand. It is not something that we think about too often, but contemporary artists David Haines and Joyce Hinterding certainly have been wondering about it – sound – a lot. What passive sounds can a payload make when moving through the air? They have chosen to do an installation in Australia and France about releasing a balloon into the stratosphere and exploring sound during the different stages of flight.

They have an upcoming exhibition opening at the Powerhouse Museum and at Parramatta in Sydney and I believe, later in France. We will be at the Powerhouse Museum for their opening night. Their details can be found at their website pages:

http://www.haineshinterding.net/category/haines/

http://www.haineshinterding.net/category/hinterding/

We have all heard the sound of the wind in recordings, but this art piece will record special sounds made by bows and strings vibrating in the wind. There were three instruments, each set to make a different pitched sound in three different planes.

A Sound Idea

They approached our balloon company, HABworx, recently to see about buying a weather balloon and doing the flight themselves. When they found out the task that they faced, they brought my son Jason and me on board to help with the technical aspects of the flight. They would concentrate of the sound aspects of the payload I met them last weekend and found out that there was a video being made of the entire workup to the flight and their friends from France would head home shortly. So one week out they hired us to make it all happen. Making Art and Sound would go into the Stratosphere

We ordered the helium, checked the electronics and arranged a NOTAM (NOtice To AirMen). A bit sexist these days, but that it what it is called. It is issued by Australia’s Civil Aviation Safety Authority (CASA) as I have already been approved to fly certain sized payloads to the Stratosphere – up to 4Kg. It took weeks and a lot of work on the risk assessment – 3 attempts at getting it right. We packed the car and met them at West Wyalong ready for the one hour trip to Rankin Springs in central NSW. The next morning we left separately after getting breakfast at the local bakery. We arrived at 8am. The rest of the team arrived nearly an hour later as they had to return to West Wyalong for fuel. They had forgotten to fill up their vehicle fuel tanks. There is nothing out there and small town fuel stations are often closed on weekends.

UpLift-28 payload sound systems preparationA Sound Launch

16-07-2016. It is winter in Australia and there had been a lot of rain over the last month. We normally launch in a reddish dirt field, but on launch day (yesterday at time of publication), it was a lush green and the small town even had to mow it in Winter. There was a frost on most of the field still in shadow, but it was warm in the sun. We set up our gear and waited for the team to arrive.

Rankins Springs Frost

Frost on the ground – Coldest launch yet.

We basically started at 9am, but their was one more wrinkle to iron out. I got a phone call from Rex Airlines operations. They had a flight from Sydney to Griffith and the pilot had asked that we don’t release the balloon between 10:45am and 11:30am local time. We agreed and so we had a 1.5 hour deadline or we may have to wait until 11:30am and that may be with a filled balloon if we were in the middle of a “fill” when we ran out of time.

I left the customer to prepare their payload, their sound instruments and sound recording and their spot tracker. I have an agreement with all flights that we have an amateur radio payload of 300 grams and usually carry an APRS transmitter and some other instruments as part of the deal. It is amazing how many HAM radio operators and others follow the flights on the APRS tracking website.

Uplift-28 balloon fillAt 10:25am the payload was complete and ready for flight so they gave me the OK to fill the balloon. That takes about 15 minutes as we like to use a standard party balloon regulator. We know that we can get a faster fill with a gauge regulator, but that is not a bog consideration and can cause trouble with extreme cold air in the neck of the balloon – especially in winter. I have no idea whether this affects the balloon, but I did not want to risk a problem. We used our special fill and seal system. It is a tube where the balloon and payload are already connected and after UpLift-28 Lift measurementthe fill, you just screw on a cap and release the balloon. You don’t need lots of people holding the balloon and there is no fear of last minute hassles securing the neck and payload. Simplicity and ease are how I would describe this light weight accessory.

At 10;42 the balloon was filled and released in about a minute. We rang Rex Airlines and gave operations the news that we were in the air.

UpLift-28 Release of sound recording payload

A Sound Flight

This is an unusual day to day the least – first request from an airline to delay a release and to be very clear, our flight was 100Km to the north of their flight path. A rather unusual request given that their altitude would be only about 6Km in my area at the most and by the time we intersected their flight path on a windy jet stream day we would be at 20Km. It worries me that we might get these requests regularly. Although the flight path can be way off the predictions, at the area of release, it is relatively accurate. As the flight time increases, the total error increases. Today we would find out that the winds were stronger than predicted. It went in the predicted direction, but traveled further due to stronger winds in the stratosphere. They got to 150kph – that is 93mph for those in the antiquated non metric systems! They were expected to be only be about 60kph maximum. At the time of the NOTAM it was only meant to travel about 50km from the release point. On the day the prediction was saying 90km and it turned out to be 130km travel. This was despite a slight overfill to ensure a good climb rate. We like about 6m/s. the direction of travel remain about the same.

Prediction for 2016-07-16_2 UpLift-28

Prediction for 2016-07-16 for UpLift-28 – line diagram (above)

 

Prediction for UpLift-28

Prediction for 2016-07-16 for UpLift-28 – 3D (above)

UpLift-28 Actual Flight.

UpLift-28 Actual Flight (above). Note that it is 2.5 times the initial prediction.

As for the Rex Airlines request, we honoured it, but we believe that they did not know that we were very experienced and could be trusted. There is no technical course to take when you decide to send a balloon to the stratosphere. You have to submit a risk assessment that is fairly tough and a “flight plan” that is really a prediction and may vary greatly as I said. I will talk to CASA today and see what I need to do in such situations. That is, when Rex Airlines asks for something that worries them on the day. To be fair – it was only the pilot of one flight – not everyone in the airline, but it was still a request from operations. If we had enough requests from pilots, then we would be stopped from flying totally. That would be an enormous amount of money to waste in this case. We had 4 vehicles and 9 people that had all traveled from Sydney for this release. 6 hotel rooms and the fact that the video people were returning to France would have been a serious blow to the whole event. I will discuss this with our Civil Aviation Safety Authority (CASA) today and also Rex Airlines and I will report on the outcome.

The next unusual thing was that the balloon went west with the winds in the low troposphere – ground winds and lower level winds and then as the jet stream took over it came back over head. This was predicted. We set a new personal record for being able to see the 3m balloon with the naked eye. 11.1km altitude right overhead. That is 6.9 miles to be able to clearly see a 9 foot white object. Amazing! Not just one person, but several with good eyesight. The incredible clear Australian winter skies and the fact that it remained overhead to that altitude was a lot to do with it of course, but I would never have thought that it was possible. Previous best was 5km altitude. I doubt that we could top this because the conditions were perfect and the balloon was a pinprick of white in a bright blue sky. Polaroid glasses may have darkened the sky to help more, but the resolution of the tiny dot was probably at optical limits for everyone.

We will need to replace our APRS transmitters because the transmitter is definitely failing. We thought it was cold from not insulating it well enough last time, but it also appears to be low power and some sort of distortion is still there at the slightest hint of cold. Last time it stopped working when exposed directly to the jet stream conditions. This time it transmitted consistently, but with large gaps all through the flight. Our ham radio had a lot of trouble picking up the signal and decoding it. This was only the start of the problems.

We tracked the payload and we were getting odd data and even set a new second personal best – an altitude of 33.668m or 20.920 miles or 110,459 feet. To be clear, we are never trying to break records. This was a 1.2Kg balloon with a 2Kg payload. Nothing special. One day we might try to see what altitude we can reach, but it will be a special flight and we might not try to recover the tracker. we would use more fuel than the tracker is worth. We need to declare that in advance so you don’t think that we lost a payload! It may be a nice job to send our dodgy tracker on a farewell flight and see if we can heat the tracker to keep it active and send it on its way. Sounds like a plan.

A Not so Sound Descent

The next problem was clear when we later saw the video that we recovered. The balloon exploded and a piece if balloon fouled the bottom of the parachute sealing the cords together and stopping the parachute from opening. The second issue was that the cord to the parachute twisted around the payload placing it on its side – even slightly upside down. The spinning slightly inverted payload mean that the SPOT 3 either never got GPS lock or could not get a good signal to the relay satellite. It also landed upside down and when we found it it also seemed to have turned itself of. It was useless. Our primary tracker was gone and we had a partially working APRS tracker. We headed past West Wyalong and to the road to Grenfell where it had given its last report at 5km altitude.

UpLift-28 watery walk to Payload landing siteFailure is Not an Option

We had a search on our hands over a wide area. We did however have a little luck on our side. As we drove past the location that we last got a decodeable transmission from the APRS unit, we heard a faint burst of noise in the receiver. That was the APRS transmitter still working with its antenna on the ground. The search area narrowed and with a tiny bit of deduction, I turned off the road and moved 50 metres closer to the downed payload and I got UpLift-28 founda decodeable burst of data. Not only that my radio digipeated to to an iGate (HAM radio talk) 240Km away and we had a fix on maps on the Internet. It was 200m / 660 feet to the north of the road. We placed our horse blanket over the barbed wire fence and walked without compass in the direction of the payload. Jason spotted it first and even though it hit hard, everything was working fine. Even the sound instruments were undamaged.

Uplift-28 Parachute twisted shut.

Jason holding the useless balloon (above)

Everyone was ecstatic and the video is truly amazing – we had a look at some of it in a little coffee shop in Grenfell. I expect that we will be assisting this team when they next need to fly. Again, this is another case of only having a partial track, but experience and a good radio ability is key to success. Before we left the landing field my son Jason (14) and I had our traditional toast to another success. It is some of the best ginger beer on the planet that is non-alcoholic. Bundaburg Ginger Beer – it is a soft drink / soda. Balloon release 28 and recovery 28. Our 100% success rate remains intact. It was a very nice drive home on a natural “high” – 33.668m high!

Videos later. More on the sound made by the passive “musical” instruments  in the video post – they worked and you will hear them. Not so musical, but more like a buzz saw!

UpLift-28 payload ready to take back to cars

UpLift-28 Payload packed and ready

UpLift-28 Robert and Jason Brand toasting success.

Robert & Jason Brand celebrating 28 releases & 28 recoveries. 100% Success. (soft drink/soda!

Our Growing Tracking Ability

Our Pajero Tracking VehicleJan 2016

Pajero Tracking Vehicle Update

So lets look at what my son, Jason (14), and I have done and are doing about our tracking vehicle. We will have more, but we are planning on at least having our 4WD SUV ready for anything that is headed our way, but tracking is all important. Note that this tracking article appeared on our Project ThunderStruck website some months ago. read more

Lots of Balloon Flights

LaunchA-3Space Rich, Time Poor

It has been too long since we posted about our activities in space. I apologise. We have been so busy and time to do “things” has been scarce. Website updates have stopped for some time. None the less we have still been doing balloon flights. Yes, that is my son Jason (14) and me releasing the first balloon flight in this set. (image right)

We did 4 flights recently in Australia: UpLift-24 to UpLift-27. The project is under commercial wraps for the moment but I can say that it was a  set of weather balloon flights for a big company. They were for their internal restructuring and next few years of corporate direction. Because of the importance of the project, we had several camera including a 360 degree x 240 degrees video camera. We will have the entire 360 degree video available once the company concerned uses it internally.These snaps are from that camera The camera uses a fish eye lens and the software allows the image to decompress and normalise the view. This means that you can, with your PC or smart phone, that you can look around the image. Look in front, look down, look left, right or rear. It is like sitting in a bubble under the payload and balloon.

So I have taken 5 frames from the video and looked around the frame in 4 different directions. Because it is an extremely wide angle lens, the images closest are very big. Jason thus looks very big compared to me in the above image. None the less, there will be nothing but a few clouds near the camera once we leave the ground. Here are 4 images from each frame. The town is Rankins Springs in NSW, Australia. Balloon Central in Australia.

The Balloon Release:

LaunchA-3   LaunchA-2

LaunchA-1   LaunchA-4

10 Metres off the Ground:

LaunchB-4   LaunchB-3

LaunchB-1   LaunchB-2

60 Metres off the Ground

LaunchC-4   LaunchC-3

LaunchC-2   LaunchC-1

The Balloon Above the Clouds

3km-4   3km-3

3km-2   3km-1

The Balloon in the Stratosphere:

Max-4   Max-3

Max-2   Max-1

You can click on each of the images for a full screen view. As I said, these are clips from a single frame from a video. We will soon be able to show you the full 360 degree fully immersible video. You can even use a VR headset or google Cardboard. Please enjoy these images for the moment.

No, we are not being obsessive about dust – it was for the video for the company. It will be magnificent. We had cameras mounted on the tracking vehicle looking forward and back to the windscreen. There was even a drone following the launch and above the tracking vehicle traveling down the highway and down dirt roads. More on these videos as soon as we can release the videos.

Oh yeh – We still have 100% recovery rate – 27 flights and 27 recoveries. There were night recoveries with this one. Two were in the dark! A first for us.

UpLift-19 Video and Pictures

UpLift-19 Media and Information

This is an unedited video and still video images from a GoPro3 Black edition camera of a weather balloon payload area. It climbs to 33.333Km where the balloon bursts and the payload free-falls back for recovery. It was a commercial flight fo Clintons Toyota, Campbelltown, NSW, Australia. They also sponsored a non-commercial payload for Project ThunderStruck – our first test for the Project for a supersonic glider to break Mach 1.5 (1,800kph / 1,120mph)

http://projectthunderstruck.org

The so called Space Chicken, frame and with the parachute deployed, it reached a top speed of 400kph / 250mph. At the 12 minute 14 second mark on the video (2 hours into the flight) there is a noticeable jarring of the payload and a small pop. This is the balloon exploding. Immediately shredded balloon hits the payload as there is virtually no air to slow it. 2 seconds later, the payload tilts showing the cloud of shredded balloon About 1 minute into the free fall we reached 400kph according to the telemetry. The drag increases at lower altitudes, so the effect of the wind is worse as it descends. It then improves as the air density increases. In the seconds after release you get to glimpse the balloon shreds rocketing into the payload from the explosion and then the cloud of shredded material in the sky. About 10 seconds later there are glimpses of the blue and white parachute not doing much during the fall due to the low air resistance. The cutdown box that is placed above the parachute actually fouls the parachute slightly during the free fall before it becomes effective at slowing the payload. The fouled parachute causes spin at the faster speeds. The video finish with the payload still well above the clouds. This was UpLift-19 by Robert and Jason Brand for Clintons Toyota.

PS, notice that thin blue line in the video and the photos? That is all the atmosphere we have and that is pretty thin near the top. 72 percent of the atmosphere is below the common cruising altitude of commercial airliners (about 10,000 m or 32,800 ft)

Jason and Robert Brand setting up the cameras on UpLift-19

Jason and Robert Brand setting up the cameras on UpLift-19

 Balloon-Burst1-seconds-after-the-event-UpLift-19

Balloon-Burst1-seconds-after-the-event-UpLift-19. Those are the shreds of the balloon.

Balloon Burst3 seconds after the event - UpLift-19

Balloon Burst3 seconds after the event Note the cloud is getting smaller as the thin air slows it faster. – UpLift-19

Balloon Burst4 seconds after the event - UpLift-19

Balloon Burst4 seconds after the event – UpLift-19 – yes, that is the sun.

Balloon Burst5 seconds after the event - UpLift-19

Balloon Burst5 seconds after the event – UpLift-19

Balloon Burst6 with Parachute in view seconds after the event - UpLift-19

Balloon Burst6 with Parachute in view seconds after the event – UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds - UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds – UpLift-19

Balloon Burst8 - Speed has slowed, but drag is greater in the thickening atmosphere - UpLift-19

Balloon Burst8 – Speed has slowed, but drag is greater in the thickening atmosphere – UpLift-19

Note: The images above are from the High Definition Video, not still images. The quality of our camera work has increased dramatically with some improvements to our methodology.