Project ThunderStruck Launched

Project ThunderStruck set to Break Barriers ThunderStruck vertical

by Robert Brand

Imagine a time when a 12 year student could build a supersonic glider 2.5m / 8ft long, attach it to a huge helium or hydrogen balloon and take it to the edge of space, release it, fly it into a dive back to earth that will reach Mach 1.5 / 1,800kph / 1,120mph and land it. Well that time is now and the student is Jason Brand from Sydney Secondary College / Balmain Campus. He is in year 7 and has already broken plenty of records. Breaking the sound barrier will be another cool record. His flight will break a lot of other records too.

  • Fastest RC plane
  • Fastest glider (of any type)
  • Highest flight
  • The longest dive
  • Youngest person or RC pilot to break the sound barrier
  • there are plenty more, but who’s counting

The event will take 6 to 9 months to complete and the testing started 3 weeks ago when a non-aerodynamic payload (space chicken from Clintons Toyota) reached speeds of 400kph / 250mph with its parachute deployed. This is because the air is pretty thin up at 33.33Km or 1/3 the way to space.

Rankins Springs Free Fall UpLift-19The space chicken was a simple test and we are now happy that we can easily fly at speeds of Mach 1.5 in the very thin air high up in the stratosphere. Left is a picture of the chicken falling back to earth at 400kph. Even the parachute could not slow the payload in the thin air. It slowed down as it reached 28Kms altitude and the air got a bit thicker.

We have started fund raising as we need help to cover the enormous cost of Project ThunderStruck.

If you can offer a dollar or two (every bit counts) we will love you. If you are rich and wish to really help, there are rewards. They are called “Perks” and we have some that I hope you will love. Some of our payloads will go supersonic before the big event, but they will not be aircraft. We might even donate one of our supersonic payloads to a generous contributor.

CLICK HERE TO DONATE with PAYPAL or on the Project ThunderStruck image at top right of the website
Below is the story from the FundRazr Website

Have a Credit or Debit card. We will have a contribution link in a couple of days!

Project ThunderStruck set to Inspire Kids Worldwide.

Fighter jets break the sound barrier every day, but this radio controlled aircraft has no engine, weighs 9Kg (20lbs), is 2.5m (8 ft) long. So the pilot must be a really experience Top Gun to fly this plane at 1,800kph (1,120mph) Well, no. His name is Jason brand and he
is 12 years old
. Can he make this a reality? Yes, he has the experience and the skills. More on that later.

So Why is this Important?

This is probably one of the most important projects that you can support. This is beyond the ability of almost every adult on the
planet, yet a 12 year old student is set to inspire kids around the world with a daring project that is pure STEM – Science Technology Engineering Mathematics. It will make the seemingly impossible the domain of the young if they choose to break down the barriers imposed by themselves or others. Not only that, there is real science going on here.

Jason’s father, Robert Brand, is a well known space entrepreneur. He is designing and testing small winged re-entry vehicles. He was
discussing with Jason the testing fo the transonic phase of the re-entry, that is, the part of the flight transitioning the sound barrier. Jason proposed that he create Project ThunderStruck and that his father asist with the project management.

The Cost

That is the hard part. We will have to do lots of testing and even the record breaking event will cost about $30,000 alone. The total cost will be $80,000 but we will only need $20,000 from crowd funding. If we make more, it will make our fundraising from sponsors a lot easier. Sponsors tend to come on board later, once they see progress.

Your Assistance is Essential

Your help now is essential. It gets us started immediately. Flying balloons to the edge of space for testing is an expensive exercise and we have a 7 hour drive each way to get into areas of low air traffic away from the major trunk routes. We also have to buy a lot of radio systems to allow remote control from the ground when the glider is up to 100kms distance.

Who is Jason Brand?

He is a 12 y/o student from Sydney Secondary College, Balmain Campus in Sydney, Australia.

He carried out his first High Altitude Balloon (HAB) project at age 9 and was so inspired that he sat for his amateur radio license at 9 years old. Since then he has launched a total of 19 HAB flights and recovered all 19. Some flights were in Croatia where mountains, swamps and landmines are risks not seen in Australia. He is also the Student Representative for Team Stellar – A Google Lunar X-Prize team attempting to get a rover onto the moon.

J20130414 Jason Brand on the Fuzzy Logic Science Showason appears on Radio and TV regularly and the picture right shows him talking about HAB flights on Canberra’s Fuzzy Logic Science Show in 2013. He is also a member of the Australian Air League, Riverwood Squadron. He plans to solo on his 15th birthday.

His father Robert Brand is an innovator in creating low cost solutions for spaceflight. He speaks regularly at international conferences, is a regular guest lecturer on aerospace at Sydney University, writes about aerospace and takes a very “hands on” approach to space. He supports Jason’s project fully.

How will ThunderStruck work?

The same way that the first pilots broke the sound barrier: in a steep dive. The problem is that since there is no engine and the biggest issue is air resistance, Jason will launch the aircraft from over 40km or nearly half way to space! He will get it there on a high altitude balloon. There the air is very thin. A fraction of one percent of the air at sea level. During the dive, the craft will accelerate to well over Mach 1 and less than Mach 2 and will need to be controllable by its normal control surfaces to pass as an aircraft. As the air thickens at low altitudes, the craft will slow and with the application of air brakes will slow and level off for normal flight to the ground.

The Technology

We will have a camera in the nose of the aircraft and it will transmit TV images to the pilot on the ground. Jason will be either in a darkened room with a monitor or wearing goggles allowing him to see the camera. This provides what is known as First-person Point of View (FPV). The aircrafts instruments will be overlaid on the video signal. This is known as “On Screen Display” or OSD. Below is a view typical of what will be seen by Jason as he lands the craft.

osdThe video signal must travel over 100kms to be assured of the craft being in the radius of the equipment. Similarly we must send commands to the control surfaces of the radio controlled aircraft. Again this must work at distance over 100kms. The craft has ailerons, elevators and rudder as well as airbreaks and other systems that need to be controlled. We will use a 10 channel system to ensure that we have full control of every aspect of the craft.

We will have to buy a $5,000 GPS unit capable of sampling at what is essentially the speed of a missile. These are highly restricted items, but essential. We will record the speed with both this unit and radar. The unit will record to an SD card and also send back telemetry every second. It is essential to knowing the speed during the flight rather than waiting until after the event. We will also need a radar responder to allow other aircraft and air traffic controllers to know where our craft is at any time.

The Big Event

We can expect global TV News coverage of the event and many records to be broken. The day will start by filling a large Zero Pressure Balloon like the one pictured below.

OLYMPUS DIGITAL CAMERAThe balloon will carry the aircrafy to over 40km where it will be released and go into a steep dive and break the sound barrier. As the air thickens, the speed will slow and the craft will be pulled out of the dive and levelled off to drop speed. The aircraft will eventually land and data and video records will be recovered. We will already know the top speed, but there is nothing like solid data rather than  radio telemetry that may miss the odd data packet.

There will be opportunities to attend, but it is likely to be in a rather remote part of the state. The flight will be broadcast over the Internet and the opportunity to track and follow the flight will be available to all. All up the opportunity to be involved is high and the science and inspiration will be out of this world. Project ThunderStruck is set to thrill.

Visit our wotzup.com website for more space and balloon stories.

We are bringing our Projectthunderstruck.org site early in October.

Space Chicken? Not Quite.

Space Chicken Flight Matches our RecordUpLift-19 Space Chicken

UpLift-19 continues our incredible success in launching and recovering payloads. That is 19 launches in the UpLift series and 19 recoveries. UpLift-19 was a bit of a record breaker for us in that it is the smallest of our balloons to reach 1/3 the way to space. Yes, that is right, 1/3 the way to space with a 1.25 kilogram payload. So not quite a space chicken, but what is in a few words said our customer.That is 2.75lbs for those few countries still using outdated measurements systems. I think that there are three left out of step with the world! (I do like to have a gentle dig at my US friends). Oh yeh – our first chicken too.

We managed to reach exactly the same height with a 3Kg balloon that we launched in Croatia, but that was carrying 2.5Kgs of payload. So what else was so special about the flight. Well, we cracked the best method of doing photography and have our clearest and most colourful shots ever taken from a balloon flight! It is hard to say what we like best about the flight, but it was a flight that we never thought would get of the ground. We had to launch in 40kph winds. Errhhh, that is 25mph for my non metric friends. That is 22 knots and please note that knots are acceptable in the metric world as they are not imperial measurements, but linked closely with dividing up the world into useable chunks – from the old sailing days.

Rankins Springs launch site UpLift-19 The flight was commissioned by Clinton Toyota and we carried 3 cameras and 2 trackers and some science experiments. We used our Spot3 tracking for the commercial requirements and provided a secondary private payload where we added an APRS tracker and some experiments. The APRS tracker gives good data above the ground where the commercial stuff is pinpointed with the SPOT3 as it will give precise coordinates when it is one the ground. We use a simple one ring gimbal to ensure that the antenna always has a view of the sky and the satellites that it uses to communicate position. For the commercial aspects, that is all that is needed – to recover the payload and cameras. The APRS invariably stops communicating anything up to 1km from the ground, depending on how close it lands to a HAM radio APRS receiver. We launched from Rankins Springs, NSW – our main launch site. It gives a clear area over most of the flight with little water or little in the way of forests to get in the way. The tracking is good on APRS for all of the flight above 700m at launch. We test the radios are fully functional before letting go. I also realised after launch that my old call sign was on the balloon. That probably confused a lot of people. My fault, but I will rectify that for the next flight.

The winds were over 40kph and we could not see a way to launch until i spotted a solid line of tall trees on the other side of the sports oval. We repacked our equipment and set up in the light wind behind the trees. It worked, but that was with the wind from the north. Usually southerly winds are the problem, so we will watch carefully for weather conditions for future flights and I have a few sites around town picked out if we get caught again.

Rankins Springs launch site UpLift-19The local primary school (Rankins Springs) came out in force to hear us talk about what we were doing and a bit of fun and science. They came back for the release of the balloon. My son Jason wore his School uniform as he was representing the school for the science experiments that were being launched. He attends Sydney Secondary College, Balmain Campus.

We completed the payload frame, made from light wood (4 x 1.2m lengths) in the hotel room the night before release and it held together very well with no damage, despite a heavy landing due to the parachute getting rather twisted up and spiraling down.

IMG_3081This meant that we were not at the site where we thought it would land and we had about a half hour drive to reach the site once we realised the problem. In essence the balloon traveled east in the jet stream at speeds of up to 130kph and then broke into the stratosphere and stopped any horizontal movement. As it climbed into the stratophere it picked up speed and traveled to the west reaching 100kph at the point the balloon burst. That was an altitude of 33.333KM – 1/3 the way to space. As I said, this exactly matched our Croatian record where we had a 2.5Kg payload and a 3Kg balloon. The free fall saw a top speed, in the upper atmosphere where the air is thin, of 400kph. That was with a parachute and a rather non-streamlined pyramid frame. That was about 1/3 of the speed of the sound barrier at sea level. I can’t wait for future flights were we will build payloads designed to fly super fast in thin air. Watch out for our attempt to break the sound barrier with a small Radio Controlled aircraft. There will be a few records broken that day. Note in the picture (left) the bubble wrap used as an insulator for the batteries and trackers.

IMG_3073That is Jason holding the balloon during the fill. Notice the cotton gloves. We use these to protect the balloon or we use latex gloves, but they really make my hands too sweaty for my liking. We measured the balloons lift with a set of luggage scales – digital – and they have a “hold” button to make it easier to turn the hand held strain gauge over and see the reading.

This flight we used a new cutdown system that uses a UHF radio (1.4 watts) and a 10 channel modulation system. It should work up to 100km, but we are yet to test it at the extremes. The unit does work on all tests on the ground and this flight we did not have to terminate the balloon other than it bursting.

By the way, Clintons Toyota had a special “Clinton’s” jacket made to keep the chicken warm during the flight, but I doubt the toy mascot needed to worry about the cold. It probably experienced about -50 to -60C in the jet stream. That’s -58 to -76F for my US friends.

Bel;ow are some more photos of the flight. I hope that you appreciate the great leap in photographic quality and that you also appreciate the careful work that I have done to ensure that we recover each and every flight. It is always a challenge to keep our record at 100% recovery. Once we lose a payload, we can never again claim 100% success rate for all of our flights.

DCIM100GOPRO

Above: Jason and I give the payload a bit of close scrutiny before launch, caught by one of the payload cameras. Posing with the Space Chicken!

Rankins Springs launch site UpLift-19

Above: You can see the wheat and canola fields up here!!!

UpLift-19 Space Chicken

Above: Our Space Chicken at 33.333Km

Rankins Springs Free Fall UpLift-19

Above: Our Space Chicken in a 400kph free fall.

Rankins Springs Sunny UpLift-19

Above:  I hope I slip, slopped, slapped enough before the flight! The sun is bright up here.

Editor’s Note. We do not approve of the term “Space” Chicken from a scientific viewpoint as it is not space, but the company that contracted us to launch the balloon decided to use the term:
http://www.macarthuradvertiser.com.au/story/2562196/space-chook-takes-history-making-journey

UpLift-2

Australian Student (12) to Attempt Breaking the Sound Barrier with Radio Controlled Aircraft

UpLift-2Jason Brand to Attempt Breaking the Sound Barrier with Model Aircraft.

In the next 12 months, Jason Brand will attempt to break the sound barrier. He is a 12 year old student from Sydney Secondary College, Balmain Campus and is a regular kid with a passion for aerospace. Not surprising as his father, Robert Brand, is one of Australia’s leading space entrepreneurs.

The event will be a huge media attraction as nothing like this has been attempted before, especially by a 12 year old Student. It will consist of a zero pressure balloon ride by the aircraft to nearly 40Km altitude. The aircraft will be released and immediately be placed into a vertical dive as Jason pilots the vehicle by remote control. He will be wearing goggles that will allow him to see the view from the cockpit and all the important instrumentation. This Point Of View (POV) feed and possibly a HD feed will be available for a live feed for the media during the event. HD TV images will be recorded in memory aboard the aircraft.

pressure wavesJason has been studying supersonic wind flow over the control surfaces and the the loss of laminar flow away from control surfaces. Add to this the drag of shock waves. He and his father have come up with a design that has minimal laminar flow issues and low drag to ensure that Jason can maintain control as the aircraft exceeds the sound barrier by as much as possible. He has also been studying Mcr and Mdr and P and a whole lot of other important factors . Look them up! Yes the flight will be similar to the original sound barrier flights by pilots such as Chuck Yeager.

The flight will involve shifting the centre of gravity during the super sonic and sub sonic flight stages and retracting the supersonic spike during normal flight. The craft will be using an ITAR controlled GPS system that is capable of operating at well over the speed of sound. Video feeds will be available for the press in real time and HD video will be stored on the aircraft in memory as will be the GPS sampling.

UpLift-1 Launch with Jason BrandJason’s interest in “what’s up there” dates back to 2009 when he was 9 years old. His father decided to launch a weather balloon to the stratosphere and recover the payload and the camera. It was a great success. They launched the first balloon from the sleepy town of Rankin Springs in central NSW. They chased the balloon with radio tracking and the flight progress, with Google terrain was broadcast on the Internet during the flight. The jet stream was slow that day and they were sitting in the shade having lunch when the balloon burst at 24Km and the payload started its decent. After a few lessons in getting to the right field through a maze of gates and fences, they recovered their first payload. Today, Jason, along with his father are veterans of 18 flights and 18 recoveries. a 100% record and they intend keeping that way through science. The picture above is Jason picking up a video camera from a payload while the still camera just happened to snap his picture. After the first balloon flight he got his Foundation Amateur Radio Operators License (HAM) by doing a course at the Waverley Amateur Radio Club. He is now passionate about radio systems in regards to assisting with his goals in Aerospace.

IMG_1883His love balloon flights and model aircraft has grown. He recently designed and built a 1.5 horsepower tricopter which can lift 2Kg of load. He has also traveled to Croatia at the invitation of Team Stellar. Jason is the Australian Student Representative for Team Stellar – a Team in the Google Lunar X-Prize. He and his father (Head of Communications, Tracking and Data for Team Stellar) were invited to Croatia to launch Student payloads into the stratosphere – a difficult task in such a small country where the need to keep the balloon and payload within the borders is paramount. Add to that the large amount of forested land, swamps and mountains; not to mention the massive problem of leftover land mines from the recent wars with bordering countries. The flights were using the largest balloons and achieved a height of over 30Kms, one reaching 33.33km – one third of the way to space.

Jason spoke in front of many scientists, teachers  and engineers over recent years including Teachers at Science Week in Albury, Engineers Australia and the Skeptics group in Croatia. He has appeared on TV in Croatia and Australia. Below is a recent interview of a major balloon event in Croatia where Jason was a key person in the project.

The attempt will cost $60,000 and he is seeking sponsorship. One Sydney University has offered assistance and resources such as wind tunnel testing. The attempt will be with CASA approval and may be required to be located away from most air traffic in remote areas of Australia.

If you are interested in sponsoring the event please contact via homepc@rbrand.com

Media Contact: Robert Brand (International) +61 448 881 101   (national) 0448 881 101

Team Stellar Balloon Flights

Team Stellar Balloons in Croatia

Here is a post straight from the Team Stellar news pages. I will have a lot more detail in a few posts soon. It was an incredible trip with really hard parameters. Jason (12) and myself went with Team Stellar’s CTO – Tim Blaxland. You can read directly this short post from Team Stellar’s website about the success and other news at:

http://www.teamstellar.org/

Yes, we launched from the heart of Zagreb! I have never launched a balloon from the middle of a city before, nor in the harsh conditions we encountered. Success was pretty much guaranteed with our reliance on well-known science for the planning.

Stellar News

Balloon Stellar Stratosphere Update

During the last week, Team Stellar launched  two science balloons into the stratosphere, about 30 km above the Earth’s surface, to collect data for the purposes of diverse student-designed experiments of the competition participants.

We brought to Croatia three team members from Australia to help us with the launch and the recovery of the balloons. Robert Brand and his son Jason hold the world record with the perfect score of 16/16 successful launches, and recoveries. Their score is even better now, with two new successes. Tim Blaxland also came to help in organizing the launches.

The first balloon was launched on April 21. It was cloudy and it was raining, we were waiting for hours for a suitable moment to launch. After a few hours, we decided to go. The balloon achieved the maximum altitude was 109,500 ft (over 33 km). The recovery was very difficult, because the payload finished its fall on the top of a really high tree. After a lot of trouble, our guys somehow managed to take it down from the tree.

The second launch was done in somewhat better conditions. It was less cloudy and no rain. We launched the second group of student experiments. We also had an experiment with full HD, 1080p Wireless (WLAN) live stream from the stratosphere. The experiment was successful, and you could watch live stream on our web page. The Balloon reached the altitude of 30,862 m.

The recovery of the second balloon was very easy. The payload fell right in front of our chase team, on the flat land.

We are now returning the experiments to the teams, so that the students can see what their experiments have measured and what kind of data were collected in the stratosphere.

 

UpLift-2

Jason (11 y/o) to Recover Balloons in Croatia

20130414 Jason Brand on the Fuzzy Logic Science ShowAustralian Student Recover Balloons in Croatia

Okay, I’ll be traveling with him to Croatia, but since there are two separate balloons to track and recover on two days, Jason will be well and truly tracking without my help and in a foreign country. He will have the team Stellar guys with him, but he will be doing the tracking and navigation for his vehicle. Stellar is a Team in the Google Lunar X Prize event. Have a look on Wiki to find out more.

jason is an 11 year old student in year 7 at Sydney Secondary College, Balmain Campus. At age 9 he obtained his Amateur Radio License (Foundation). We has some programing experience and builds and repairs helicopters and tricopters. He has helped track and recover 16 successful High Altitude Balloons and together Jason and I have the world’s highest recovery rate – 100% over an enormous number of missions.

A quick snapshot of the whole event:

We travel to Croatia at the start of the NSW school holidays. They are two weeks long. Jason and I will probably be traveling with fellow Team Stellar member Tim Blaxland. Tim is our team’s chief of UpLift-2Navigation. I look after the Team’s Communications, Tracking and Data. Jason is the Australian Student Representative and he is also my son.

Jason will be taking part in the planning phases of the mission and will have a big role in talking to the press and to school students. He will be bringing his newly built tricopter with him and he will be showing students what they can do with a little help. he will be talking about High Altitude Balloons (HAB) and the science of the troposphere and the stratosphere.

We will launch over two days and thus need to track 4 balloons – mostly with students experiments.  We have done our best to ensure success of Stellar’s “Balloon Stratosphere“.

Follow up interviews and more student mentoring and sessions.

Return to Sydney.

Much of this trip will be assisting the Croatian members of Team Stellar to get comfortable with HAB missions. Jason and I hope that we can pass on our expertise to the Croatian members.

Tim Blaxland already has some experience helping with a flight in NSW with us. That flight achieved nearly 37km altitude. We recovered the payload in a freshly cut wheat field a few weeks back.

More updates with travel and tracking information shortly. The picture below is Jason, Tim and I with some others preparing the recent balloon for flight. it is a 1.2kg balloon. Stellar’s balloons will be 3kg! That is the view from the payload camera.

DCIM100GOPRO

 

Preparing Your Balloon Payload

Stellar Balloon flight to the stratosphere in CroatiaPacking a High Altitude Balloon Payload

Below is a set of instructions I used to help some teams launch their balloon payloads in our upcoming HAB flights in Croatia. You might like to consider them a guideline to how you can pack a payload in light weight material for your flight. Of course you can use a Styrofoam box, but that is a bit of an overkill in the world of light weight  payloads.

If this helps, then please use the ideas and send us a link on your web page:

The Instructions:

Creating your experiment is the hard part, but finding something to put it in can be very difficult too. I have included some idea here that should help. Firstly, let me say congratulations in getting this far. It is great to see so many ready worthy experiments going into the stratosphere.

Let me start this paper by explaining what the out package is meant to do. The balloon will leave the ground and quickly rise in to the upper areas of the troposphere . Here is where jet aircraft fly and if you have ever flown and seen the outside temperature, displayed on the navigation screen, you will know it can get to around -60 C. Hopefully we will only have temperatures of around -50 C. By the time we reach 7km, there is more mass atmosphere below us than above us. In fact way more. This means that the atmospheric pressure is getting very low. At about 20km altitude, we will pass from the troposphere and into the small layer known as the tropopause. Look that up!

The stratosphere is next and it is very warm compared to the temperatures in the jet stream. It may reach -20C or in some places and on some occasions could reach an amazing 5 C. Since the balloon flies with the wind, there is very little force on the balloon during its flight. Even when the balloon explodes, the fall has little impact on the experiments. It is briefly like the “weightlessness” of space. A light foam package may reach speeds of 160kph in the thin air. As the air thickens the parachute slows the payload and we should have a light impact of only around 5m/s or 18kph. Finally what if it lands in water?

So, the main things that we need to combat are:

  • Pressure
  • Temperature
  • Weight
  • Landing impact
  • Water

A note on batteries. Very cold conditions will cause problems for some types of batteries. Alkaline batteries can be a big problem aand can fail during the flight. We recommend Lithium batteries as these resist the cold very well. They also last about 4 times longer than Alkaline batteries.

Weight is simple, each experiment is meant to weigh only 150 grams, including the packaging, so we are looking for very strong light weight packaging that will fit the size of our payload.

Pressure is less of a problem on the most part. Most things survive pressures close the extremely low pressures of space. We will expect about 1% of the pressure seen at sea level. Pressure does however make it hard to waterproof a payload. Waterproofing usually means sealing things up. That unfortunately will probably create an explosive effect on a large mass of air in any packaging.

Temperature of the payload – or cooling! Heat will leave your experiment quickly and freezing temperatures will probably be experienced at about 3,000m. from then on, your experiment will not return to temperatures above freezing until back on the ground. Check your battery specifications and we have some things that we can do to limit the effects on the battery. More on that later.

Landing Impact is not high. It is easy to cushion an impact of that size. You can run as as fast as that for a short time. The fastest human foot speed on record is 44.72 km/h. The cover still needs to cushion the impact.

Water. We hope to ensure that if it lands in water, we can still recover the experiments. Nothing will keep water out, unless you can make sure that there is no air in the packaging. Then it can be sealed totally. This will be difficult.

Suggestion 1 – Bubble Wrap

Sounds crazy, but bubble wrap can survive in space without the bubbles exploding. It achieves all of the objectives and can even keep water out. it is a good thermal insulator as it has trapped air, it is very light and can cushion impacts as well as floating. It is what I like to use if possible.  The electronics for UpLift 16 was wrapped in Bubble Wrap. You can see the wires  coming out of the package.

In the above picture, the three wires on the right terminate in a black temperature sensor for the outside air. By keeping it in the shade just beneath the bubble wrap, I was able to measure the temperature of the atmosphere at different altitudes. After landing, it was over 2 weeks before we went to recover the payload and the electronics were intact. In fact we did not even use a parachute. The bubble wrap provided the cushioning for a fall from the stratosphere. It also cause some air braking, slowing the fall. Since the battery was next it the electronics – separated by one layer of insulation tape, the warmth of the payload and the warmth of the battery are used to keep both as warm as possible by each adding to the internal heat. The bubble wrap simply slows the loss of heat.

The one thing to remember when using it is to wrap it three times. Also remember that the bubbles will expand and will apply some pressure to the payload unless loosely wrapped. It should be sealed with a light weight tape.

Bubblewrap

Suggestion 2 – Food container

Ever had takeaway food in a plastic container? These are very light and strong. If they land hard, they may crack, but that is about it. They are also rather air tight at time. If using these and you do not cut holes for sensors, cameras, wires, etc please remember to add a small hole to allow the air to exit and enter so that it does not blow the lid off the container or crush it.  The pin hole will not let in too much water if it lands in a lake, so it will float. You may still need some bubble wrap around the outside, but this is still very light weight. The ones pictured below weigh 33 grams

 Takeaway Food Container

 

Suggestion 3 – Paper Towel Roll

These are long and strong as well as light weight. Simply they work well. They are also very light weight – 10 grams. You can tape the ends for both securing the payload and increasing the strength. It is not water resistant, but there is almost no way of protecting your payload for the small possibility the payload landing in water. You can carefully cut the roll to form a smaller holder and lower weight.

 IMG_1946

Suggestion 4 – Toilet Rolls – Clean and Unused!

Make sure that the roll has not been used in the toilet please! Remove the paper and you will find a short roll about half the size of the paper towel roll weighing about 5 grams. Again, taping the ends will help in securing you payload and increasing strength.

Suggestion 5 – Kitchen and other containers

Look around the kitchen, the bathroom and almost anywhere in your office or home there are a variety of containers. Here are two more:

IMG_1947 IMG_1948

One is a cotton bud container weighing 20 grams – small but very strong. The other is a fruit container without a lid. You can cover the top with a rectangle of thin plastic – ensure air can escape. The cotton bud container weighs 20 grams and the fruit container weighs also weighs 20 grams but is very large in comparison.

Electrical Connections

It is important to ensure a secure electrical connection if using electronics. We suggest that all connections be soldered and also make sure that switches are not easily “knocked” to the off position. This can be easily achieved by cutting the top off a lever type switch – even a tiny ones. This means less of the lever to get in the way as well as less leverage. Similarly there are other switches such as slide switches. These can be accidentally knocked too. You can cut these down too. We can use a screwdriver to slide the switch as directed in your instructions. You can also go to your electronics shop and get a switch that may need a screwdriver to operate.

We can also suggest that you tape the switch to the “on” position so that it cannot be accidentally switched off if bumped during packing or during flight.

Alternatively, use a Plug and socket. these are robust. Below is a picture of a battery pack with a connector ready to be plugged into the payload.

 IMG_1955

These are small and very light weigh.

Final Tips

A few final tips:

  • Write your full details on a label on the payload.
  • Use a waterproof pen on the container.
  • We suggest that you use Lithium batteries and thermal insulation to keep your batteries (and possibly the payload) from freezing.
  • Have fun creating your experiment.
  • Stand back – we are doing science! 

As I said at the start, these are a few ideas for students participating in Team Stellar’s Stratospheric Balloon flight / Balon Stratosfera. I hope that some of this helps with your own balloon projects.

 

The Moon Landing and Educational Activities – Team Stellar

Educational Activities – Team Stellar

I was part of a Croatian press conference via Skype in December. It was an unusual feeling talking to an audience that you could not see or hear. The press conference was for Team Stellar and the upcoming balloon flight in Croatia. Jason and I are going to oversee the balloon flight and recovery of the payload.

This is from the Team Stellar blogsite. The original link is here:
http://www.googlelunarxprize.org/teams/stellar/blog/moon-landing-and-educational-activities

You really need to read this and other stories on the Team Stellar Blog:
http://www.googlelunarxprize.org/teams/stellar

Press conference 

This was a great month for space exploration . We all witnessed the Chinese Chang 3 having landed softly on the Moon, and Yutu (Jade Rabbit) rover is on its surface now. China has become the 3rd country in the world to put the robotic vehicle on the moon.

It is the first soft-landing on the moon by any spacecraft in 37 years. And it was especially interesting for us, all of the Google Lunar XPRIZE teams in the competition, because we are trying to do the same. There is only one small difference: we are doing it without the resources of the world economic superpower. Regardless, we strive to reduce the cost of the mission, we want to optimize each and every one of its segments, and that is our goal.

We want to get to the Moon as cheaply and as effectively as possible. We want to reduce all cost and make our technology commercially usable for the future.

Our COO Theo Valich giving interview for the television

Also, we held a press conference in Zagreb, Croatia to promote our educational outreach program, Balloon Stellar – Stratosphere. It was a great success. We want to spark interest of high school students in science and space exploration.  You can find out more on the subject on our webpage www.teamstellar.org ,or on our social media pages and channels.

Balloon Stellar – Stratosphere – Croatia

Balloon Stellar – Stratosphere to Launch in Croatia in April

Jason and I are headed to oversee the launch of this flight in Croatia. It will be in the NSW School Holidays.

This is from the Team Stellar blogsite. The original link is here:
http://www.googlelunarxprize.org/teams/stellar/blog/balloon-stellar-stratosphere

You really need to read this and other stories on the Team Stellar Blog:
http://www.googlelunarxprize.org/teams/stellar

Balloon Stellar – Stratosphere is our first serious educational program. That is why we have invested so much enthusiasm in its development. After a few months of preparations, uncountable work hours, eight creative workshops with over 130 participants, and many miles on the road, it finally starts. You can learn more about Balloon Stellar – Stratosphere competition here.

Group photo after the workshop in Metković, Croatia

Following the example of Google Lunar XPRIZE, we decided to offer a cash prizes to the most successful teams. We announced our competition everywhere and in every possible way.

We gave them an opportunity, and also the motivation.

We have prepared a special micro-site for the competition, we held a press conference, we were guests on TV on several occasions, and we were interviewed for the newspapers. Our social media pages and channels were constantly buzzing on the subject.

And now, all of our hopes have finally come true.  We have 21 teams in the competition! It is a great number of the teams, if you know that Croatia has the population of less than 4.5 mil. inhabitants.

We are more than happy with that number, but we are also very happy with the ideas for the experiments from high school teams.

You will hear more about the students’ experiments latter, but, in this post, I want to say something about creative workshops we have organized for the interested students.

The physicist Bojan Markičević, educational expert and communicator of science, was just the right person to conduct these workshops. Bojan has ten years of international experience in educational activities. He has a somewhat unconventional approach to knowledge transfer in relation to the classical education, especially in Croatia.

Bojan Markičević

Bojan traveled for over 2500 kilometers in just two weeks, in order to reach all of the teams (high school students) and encourage them to enter the competition.

He did not want to impose some ideas for the experiments or tell them what and how to do  them. The main goal of his creative workshops was to awaken their interest in science, and to prepare them for teamwork. Bojan has developed a series of activities for the 4-hour workshops which are interesting, refreshing and mind opening.

One of the activities during the creative workshop

He wants to include all of the participants in the conversation  to freely express their minds and to defend their opinions in a discussions, without any fear and reservations.

After the workshop, Bojan usually asks students to evaluate the workshop. They write their opinions about the workshop on the coloured papers, and stick them to the panel.

     

The high school students’ messages are clear, they find the workshops interesting, challenging, and they think that it helped them a lot to find a new perspective on the world around them. We are also hoping that Bojan`s workshops helped them learn the most important thing in science: how to ask the right question. When you learn how to formulate your question, only then you can conduct an experiment and find the right answer. Asking questions and finding answers, science is all about that.

Two days ago, we have published the names of the teams which entered the competition, and we wish all of them the best luck. Our balloons will fly the high school experiments this spring. Stay tuned.

Stellar Balloon Mission Gaining Momentum

UpLift-1 Securing the neck and the payloadStellar Balloon – Stratosphere

This is the background detail on the Team Stellar High Altitude Balloon mission that Jason and I are flying to Croatia to assist. The article below is from the Team Stellar website:

http://teamstellar.org/#news-19

Team Stellar is developing a project competition “STELLAR BALLOON – STRATOSPHERE”, open to teams from all interested high schools throughout Croatia.

Team Stellar will launch a science balloon into the stratosphere, about 30 km above the Earth’s surface, to collect data for the purposes of diverse student-designed experiments of the competition participants.

Through this innovative project, high-school students are given the opportunity to work with scientists and engineers from Team Stellar and experience an authentic flight mission from the start to the finish firsthand, while learning practical math, science and engineering skills, among others.

“STELLAR BALLOON – STRATOSPHERE” COMPETITION AIMS TO:

Stellar Balloon flight to the stratosphere in Croatia• stimulate the students’ interest in science and technology

• challenge their imaginative thinking and creativity

• support educational needs of gifted children

• encourage inter-institutional cooperation

• develop teamwork skills

• create a “healthy” environment and interest to improve the educational system and free-time activities

• raise awareness about the natural phenomena and ecological values of the planet Earth

CONDITIONS AND FUNDING:

There is no limit to the number of teams that can apply and every high school in Croatia can participate.

In order to join the competition, the applicants must submit an official proposal containing all the necessary documentation, including a clear description of the experiment, scientific objectives, technical plan, team organization, etc. A wide variety of topics may be pursued, including science and weather observations, remote sensing and image processing, engineering demonstrations, electronics, robotics and communications, etc.

Team Stellar and the committee members will select the first 20-50 candidates to participate in the balloon launch.

The selection will be made based on the originality of the idea and the quality of the student-designed experiments.

The schools are responsible for the funding of their teams’ experiments. Team Stellar will provide the necessary resources for the balloon [payload] design.

RESULTS:

Team Stellar will award the best three experiments.

Team Stellar will uplift the balloon [payload], track it, collect it upon landing, and return the payloads comprising of various experiments, planned by the students, to the participating teams for further analysis of the gathered data.

Each team is obligated to submit a final report, including the experiment description and the results, along with the entire work process within the team. All the participating high-school teams will have access to the complete results of the experiments.

UpLift-1 in the Sydney Morning Herald (Archives)

Sydney’s very own space agency: Brand and son

*** Recovered from the Archives ***

This excerpt from the Sydney Morning Herald, January 16, 2012. UpLift-1 in the Sydney Morning Herald

Sydney’s Space Agency

Sydney space enthusiast Robert Brand, with the help of local school students has built and launched a weather balloon a quarter of the way to space.

Sydney space enthusiast Robert Brand and his 9-year-old son Jason recently launched a high-tech weather balloon a quarter of the way to space, retrieving images and flight data to help school children get a better understanding about space.

Mr Brand, of Dulwich Hill, has a history with space – at age 17 he wired up some of the Apollo 11 communications gear in Sydney during his term break from college. He was also stationed at the CSIRO Parkes Observatory in New South Wales at the request of the European Space Agency for spacecraft Giotto’s encounter with Halley’s comet in 1986 and Voyager’s encounter with Uranus and Neptune in 1986 and ’89. Also under his belt is an award from NASA for support of STS-1, the first orbital flight of the Space Shuttle program, presented personally by the commander and moon walker John Young.

So when it came time for Mr Brand to launch his own gear towards space he was well prepared, documenting his do-it-yourself journey on his personal blog wotzup.com for other space enthusiasts to watch and track.

Jason and his father Robert celebrate retrieving their weather balloon, which captured data and images on a mission a quarter of the way to space.

Jason and his father Robert celebrate with ginger beer (soda/soft drink) after retrieving their weather balloon, which captured data and images on a mission a quarter of the way to space. Photo: Supplied

“[The balloon launch] was being done to help science education in the Sydney area and anywhere else in fact because we were publishing [on the internet] all of the information and data that we got from the balloon launch,” said Mr Brand, 59.

Launch day was December 28, 2011 from Rankins Springs near Goolgowi in Central NSW. As the balloon got up to about 85,000 feet (25.9 kilometres) above Earth before it burst, Mr Brand and his son tracked it using amateur radio.

“During the flight we were actually relaying data back to the ground and off to a server and that allowed people from all over the world to actually participate with this flight and track it as it was going,” Mr Brand said. “We were getting back a lot of comments on some of the social media [services] such as Facebook just really helping us understand what they were sort of getting out of the whole project. People were sort of yelling loudly if you could put it that way, on the [wotzup] website claiming ‘Hey, they’ve reached this height and that height’, and so there was a lot of really great audience participation in this.”

Robert and his son pump the weather balloon with helium before launch.

Robert and his son pump the weather balloon with helium before launch. Photo: Supplied

The data being sent back from the balloon – which was later recovered about 50 kilometres away from where it was launched – tracked altitude, position, rate of climb, payload temperature, payload voltage and air pressure, Mr Brand said. The balloon also has a camera on board that captured still images. “We could actually see as [the balloon] hit different wind levels in the atmosphere and eventually we got up into a jet stream and actually found that we had two jet streams,” Mr Brand added.

When the balloon finally popped it came hurtling back towards Earth at about 40 metres per second, according to flight data.

“So this thing was falling a bit like a brick would fall at ground level but it slowed down and eventually the parachute dropped it on the ground at about six metres per second,” Mr Brand said.


The view from 10,666 metres, the height at which commerical jets will normally fly at.

Photos from Robert and Jason Brand’s weather balloon flight

The view from 10,666 metres, the height at which commercial jets will normally fly at. Photo: Robert and Jason Brand

  • The view from 10,666 metres, the height at which commerical jets will normally fly at.
  • The view from 21,977 metres.
  • The view from 22,222 metres.
  • The view from 22,470 metres.
  • The view from 22,969 metres.
  • The view from 24,305 metres.
  • The view from 26181 metres.
  • The view from 300 metres.
  • The view from 3235 metres
  • The view from 4153 metres.

The balloon (payload) was put together with the help of senior students at Sydney Secondary College at Blackwattle Bay, who Brand sought to get involved with the project and tasked them with doing a whole stack of materials testing. They tested the Styrofoam and how it reacted in zero atmosphere as well as the glue, ensuring it would hold throughout the flight. “The students were putting these materials in a bell jar and sucking the air out of it . . . and checking all of the materials held together – and to protect some of the electronics from the very cold temperatures of about minus 50 Celsius we simply used bubble wrap. … You’d be surprised to know that bubble wrap doesn’t explode when it gets into pretty much zero atmosphere.”

What's in the box? Jason shows the weather balloon's payload.

The photos that came back from maximum altitude look “pretty much like that taken from a space shuttle”, Mr Brand said.

“So very dark skies looking at this very thin blue line around the Earth which is our atmosphere and protective layer. It’s a bit scary when you see that photo and realise how thin the Earth’s atmosphere really is.”

Picture right: What’s in the box? Jason shows the weather balloon’s payload. Photo: Supplied

When it came time to recover the balloon it was tracked to landing on a field near the small town of Weethalle in NSW, Mr Brand said. “There was nothing growing on it. It seemed to have been abandoned.”

After knocking on a farm door to no avail, he and his son entered the field to locate the balloon. After driving “pretty much right on top of it” it was recovered, allowing for the father and son duo to publish the photos it captured that weren’t sent back live but stored on the camera attached to the balloon.

Mr Brand hopes to do more balloon launches and get schools involved.

“I’ll keep doing this each year and trying to get . . . more interest in the school year earlier in the year. I’m very keen to hear from people that might be interested in getting involved.”

End of article: UpLift-1 in the Sydney Morning Herald

Balon Stellar Stratosfera 30Km

Stellar Balloon flight to the stratosphere in CroatiaJason & Robert to Fly Balloons (HAB) in Croatia.

by Robert Brand

As many will know, I am the Director of Spacecraft Communications, Navigation and Data for Team Stellar and Jason is Stellar’s Australian Student Representative.

Jason and I also hold a world record for launching and recovering High Altitude Balloons (HABs). We have launched and recovered 16 so far and you can’t get better than 100% success. Mind you, much of that is attributed to us researching and finding a fantastic launch and recovery area with HAM radio APRS coverage (one of our tracking systems), flat and clear land with little water and good mobile telephone coverage and good access roads to farming and grazing land.

Croatia is a very different place. Our Team Stellar Croatian associates have told us that part of our recovery team will be Aplinists, capable of hiking in snow and ice to recover any balloon that lands high up on a mountain!

So why is Stellar launching these flights?

STEM EDUCATION:

Balon Stellar Stratosfera 30Km

Basically we will be carrying experiments from schools all over Croatia. They will go into the stratosphere and after recovery they will be returned to the schools for analysis and of course we expect them to publish the results.

More on this soon.

This is just one of several activities being undertaken by Team Stellar in the name of STEM Education – Science, Technology, Engineering, and Mathematics. Jason is 11 years old and will just turn 12 when we assist with this flight and will have just completed his first term in high school (year 7). He will be attending Sydney Secondary College – Balmain Campus just as his two older sisters did.

These will be larger balloons that will be needed to lift heavy payloads and to get them into the stratosphere before they explode and return to earth. We also expect to have cut-down ability to command the payload to release from the balloon and return to earth.

We will let you know more as we prepare for the flights in 6 months’ time. You can read more here later and more at:

http://teamstellar.org

That is Jason and I celebrating with a soft drink after the successful recovery of UpLift-1, our first balloon mission in December 2011. Jason does the tracking, radio systems and navigation – I just do the driving.
Jason and Robert Brand Recover UpLift-1

UpLift-1 Raw Data 28th Dec 2011 (Archives)

WotzUp_Black_logo.135x100.jpg*** Retrieved from Archives ***

UpLift-1 Flight Data 2011-12-28

I have already detailed the top level science that is easily seen from the data returned by radio telemetry from the flight. The radio link returns data approximately every 20 seconds and it has a variety of information as described previously. There are a few plots missing from the start and end of the flight as the tracking system only 863worked when the receivers could see the balloon. We were effectively over the radio horizon due to the distance from the receivers – much like a light house cannot light the ocean around it unless it is on a high headland. There are also 3 plots missing during the 2.5 hour flight. I have added these in to smooth out the plots, but the estimations are all in red. I have not tried to extrapolate data from the landing as I was not present to see the course it took.

The Database information is available in metric form and not imperial. You will need to convert that yourself, but that is very easy.

You can download the database here for educational purposed and similarly any photos are available for education purposes, but are copyright – Robert Brand 2011

CLICK HERE to DOWNLOAD the DATABASE

The file contains both flight data and graphs as used in the posts on this website re UpLift-1′s flight. There is also a list of photograph numbers. Many were unusable due to sun, glare, direction of the photo, etc. All photos indicated with a “1′ are available on this website in subsequent posts.

As far as position accuracy is concerned, the data from the telemetry also contain a parameter called HDOP. Firstly let’s look at DOP:

The following information is from http://gpsinformation.net/main/dopnontech.htm

Dilution of Precision

The DOP factor is used in a very simple equation:

SD(position) = DOP * SD(inputs)

This means that the standard deviation of the position is simply the standard deviation of the inputs multiplied times the DOP factor. Of course, this formula isn’t as simple as it looks, since for GPS a multidimensional solution is required, and therefore matrix mathematics is used. But the idea is good.

One interesting thing about DOP is that it does not depend on the anything that cannot be predicted in advance. It only depends on the positions of the GPS satellites relative to the GPS receiver’s location. The satellite positions can be calculated in advance, so you can determine the quality of your GPS position fix in advance, without even using the GPS system.

Satellite geometry

DOP only depends on the position of the satellites: how many satellites you can see, how high they are in the sky, and the bearing towards them. This is often refered to as the geometry. The satellites move, so the geometry varies with time, but it is very predictable.

HDOP = Horizontal Dilution of Position

HDOP is horizontal DOP. It is one component of the total DOP. Others are VHOP for Vertical DOP, PDOP for 3D positions, TDOP for time, and GDOP for geometic DOP. Altogether they =DOP.

UpLift-1  was outdoors and the receiver facing the sky with only a layer of bubble-wrap and Styrofoam that had already been tested for GPS integrity. It offered no apparent impediment to GPS signals. In fact the entire flight was a DOP=1. This is the lowest error estimate and means the horizontal position information was estimated to be very accurate. It has not been included with the figures. The vertical position also appears to be accurate with the repetition of the data and the expected rates of slowing on descent. The smoothness of the curves attests to the quality of the results.

The Space Show (Archives)

David Livingston*** Retrieved from Archives ***

Robert Brand – Guest on The Space Show

Robert Brand was a guest of Dr David Livingston on the Nov 1st 2011 edition of The Space Show. The program disussed Do-It-Yourself Space and was well received by all that heard it. The WotzUp website and the various missions were discussed at length during the broadcast.

The program can be hear by Click Here to Listen 

The Space Show page for the show archive can be viewed by Clicking Here to View

The page details are as follows:

Guest: Robert Brand.

Topics: Australian space history, Save Our Space Systems, old style radio dish antennas, space education outreach in Australia. You are invited to comment, ask questions, and discuss the Space Show program/guest(s) on the Space Show blog, http://thespaceshow.wordpress.com. Comments, questions, and any discussion must be relevant and applicable to Space Show programming. Transcripts of Space Show programs are not permitted without prior written consent from The Space Show (even if for personal use) & are a violation of the Space Show copyright. We welcomed Robert Brand as our guest to discuss space advocacy, space interests, education, and projects in Australia. I suggest you visit and have available the following websites while listening to this program: 1) http://wotzup.com. This site has the tabs and pages for many of the programs discussed by our guest. 2). http://echoesofapollo.com. 3) http://pluscomms.com. Click on the Space-Comms tab. In our first segment, Mr. Brand began by talking about the Global Space Network he was creating by utilizing outdated equipment such as 30 meter dishes that have been abandoned. He described his concept in detail, including costs and the likely customer base. Later in this segment, we took several calls from listeners such as the one by Roger that commented on the outstanding space education outreach projects undertaken by Mr. Brand so we moved along to the topic of kids and space education. Robert talked about 3D lunar photography from Apollo and some of his Middle School outreach projects. Later, Monroe called in to mention Team Prometheus and their satellite project as well as the N-Prize. You can learn more about Team Prometheus at www.teamprometheus.org. Kimberly emailed in requesting Robert share his vision for 21st century space awareness. Robert replied saying “making space everyday for everyday people.” Trent called from Australia to ask Robert what he thought were the greatest space needs for Australia. Robert talked about the need for disaster recovery information, data, facilities, etc. using real time space resources. In the second long segment, Robert directed us to his various websites listed at the start of this summary. We talked about Moon Bounce and Space-Quest, amateur radio , the UpLift project with balloon launches, and more. Robert went through the other programs on www.wotzup.com site including SugarShot, MissionTrax, Kidz-In-Space, and we talked about cubesat swarms and owning your own personal satellite. Later, he told us about his building a satellite tracker in his basement, he talked about holding workshops in his area to promote space education and personally owning a satellite, plus getting kids to take ownership of the technology, research, and data which inspires them with the projects, all of which is part of Do-It-Yourself-Space. Later, we talked about Australian space interests, the Australian space program, and space awareness in Australia. During the last few minutes of our two hour discussion, we talked space history, the Apollo program, the Parkes Radio Telescope, Honeysuckle Creek, the Challenger disaster, Robert’s leaving the industry and then his return to promote space education among kids. You can email Robert Brand at Robert.Brand@pluscomms.com

After you have listened, please post a comment on the following blog for The Space Show:

http://thespaceshow.wordpress.com/2011/11/02/robert-brand-tuesday-11-1-11/

UpLift-1 Science Questions (Archives)

Balloon Testing UpLift-1InnerwestCourier 20111110_p07*** Recovered From Archives ***

Students get Busy with UpLift-1

We are now well engaged with one Primary School and a 3 campus college. We are hoping for more schools to come on board, but so far the results are more than satisfying.

The senior students at Leichhardt Primary School in Sydney are having a naming contest for the capsule. Y3-6 will be involved and the teachers will pick the winning student. Their picture will be placed in the capsule and sent skyward.

The students at Sydney Secondary College’s Blackwattle Bay campus have already begun to build the capsule and have participated in a workshop with me. They have also been doing some science experiments to test the materials that we will be using. More on that below.

The students at Sydney Secondary College’s Leichhardt campus will meet with me shortly for their first workshop.

The workshop outline the mission and allow students to begin with science experiments to find out what will happen during the flight and what might cause problems.

The experiments that have already been conducted at Blackwattle Bay are:

  • Testing bubble wrap at 1/100th the sea level air pressure (our thermal payload blanket)
  • Testing Styrofoam for slow decompression (for a 2 hour ascent) and then a more rapid compression (over a 30 minutes descent).
  • Testing a jig and hot wire cutter for the Styrofoam for the capsule
  • Testing a suitable glue for Styrofoam

These high school students will be making up our mission team and the Leichhardt campus will be holding a special science workshop during the morning so that student swill be able to monitor the progress of the flight and doing the science experiments on the day. There will be discussions on the tracking system and returned data. They will also get video updates on the mission before and during the flight.

I would encourage students to estimate the burst altitude from information available on the web for a Kaymont 350 gram balloon from Totex and the conditions on the day. Lower temperatures will keep the balloon aloft longer.