Super Sale – 48 Hours only

IMG_7340Super Sale – Weather Balloons, HAB Flights and More – 48Hrs

Live in Australia?

Monday 17th November 4pm: We are, as always, raising funds for our Project ThunderStruck. Live in Australia and want weather balloons, want us to take your payload to the Stratosphere, or want to rent HAM radio tracking gear?

Sale Ends Wednesday 19th Nov 2015 at 4pm

Learn to Launch and Recover HABs

HABs? High Altitude Balloons. We can do just about anything. We can even take you along with us and show you how its done. It is the full course on flying payloads into the stratosphere. Just $500 per car and you drive your own vehicle – it must be in good condition and suitable for dirt roads.. We launch from west of West Wyalong in southern central part of NSW. The course is hands on and you will get to have a tracking radio in the car and be part of the recovery team. You cover all your own personal costs including road assistance coverage, etc.. You will also need a wireless enabled tablet – preferably Telstra connected and a mobile phone, again preferable with Telstra connectivity. Conditions apply. We may be flying this weekend. Maximum people in one car for the above price is three.

Balloons for Sale

We current have 30 x 100 gram balloons at $10 each + $15 delivery for 1 or 10. We have 2 x 500 gram balloons for $100 delivered in Australia by express post, a 350 gram balloon at $75 delivered in Australia express post and some older 3Kg balloons for $200 each – no guarantees. They are probably 3 years old, but that is all I know.

Helium

We can even rent you 3.4 cubic metre helium bottles (Size E) and balloon regulators. These need to picked up from and returned to Sydney and require substantial deposit of $700 per bottle fully refundable. At this stage it is cash only as we do not carry credit cards. It is also $2 per day per bottle after 1 week’s rental if overdue.

Radios, GPS, Cameras

The HAM radio equipment includes:

  • Yaesu GPS enabled APRS tracker VX-8 two way radio – VHF / UHF dual band
  • Byonics MT-400 APRS trackers – pre-configured with your call sign and SSD
  • GPS units for MT-400
  • Spot 2 and Spot 3 trackers
  • GoPro cameras with external connections for Lithium Iron batteries
  • Lithium Iron Batteries and charger
  • antennas

Send your Mascot or Sign to Near Space?

We can do it for $1,200, down for the sale from 1,500 and that was a special deal already – marked down from $3,000. Conditions apply.

Payment

Sale ends at 4pm Wednesday 19th November 2015 EDST

A 50% deposit must be made tomorrow (Monday) at a CBA branch OVER THE COUNTER to get this sale discount or goods with the balance on most items by Wednesday. This sale ends Monday at 4pm, but call me to negotiate a price after 4pm. For details on the rental of radio equipment and gas bottles- you can call me on 0467 545 755 or call 02 9789 2773 and leave a message if I am unavailable. You may have to ring for a while to go to the messaging service.

Want to see when we have the next sale. Subscribe to our RSS feed to get our posts and be ready.

http://wotzup.com/feed/

Air Pressure, Altitude, Balloons and Rockets

Weather Balloon BurstAir Pressure and how it Affects Balloons and Rockets

By Robert Brand

Rockets

One of the big issues for rockets flying to space is the air pressure it must climb through. As a rocket climbs it gets faster and has to push more air out of the way. As it goes higher the air thins and you can see from the table below that it is exponential. Have a look at the 1/100th  fraction of one atmosphere below and you will see that the atmosphere is 1% of sea level. The change is not linear. The atmosphere thins to a tiny percentage at twice that height, but at half the height it is 10% of the sea level pressure.

NASA says: The velocity of a rocket during launch is constantly increasing with altitude. Therefore, the dynamic pressure on a rocket during launch is initially zero because the velocity is zero. The dynamic pressure increases because of the increasing velocity to some maximum value, called the maximum dynamic pressure, or Max Q. Then the dynamic pressure decreases because of the decreasing density. The Max Q condition is a design constraint on full scale rockets.

fractionof 1 atmosphere (ATM) average altitude
(m) (ft)
1 0 0
1/2 5,486.3 18,000
1/3 8,375.8 27,480
1/10 16,131.9 52,926
1/100 30,900.9 101,381
1/1000 48,467.2 159,013
1/10000 69,463.6 227,899
1/100000 96,281.6 283,076

The Falcon9 reaches the speed of sound at 1 min 10 sec into its flight and then reaches Max Q just 8 to 13 seconds later depending on speed,and air pressure variables. Unlike airplanes, a rocket’s thrust actually increases with altitude; Falcon 9 generates 1.3 million pounds of thrust at sea level but gets up to 1.5 million pounds of thrust in the vacuum of space. The first stage engines are gradually throttled near the end of first-stage flight to limit launch vehicle acceleration as the rocket’s mass decreases with the burning of fuel.

Want to know more? This is not full of maths, just some fun stuff about Max Q and reaching orbit.

Balloons

Well for balloons we have a different issue. Balloons have to displace their weight in gas in the atmosphere and that includes displacing enough gas for the weight of the payload too.

Rate of Climb - Fall vs TimeThe climb to maximum altitude for the most part is linear. I discovered this when analysing the stats from my first balloon flight. It was linear until it reached the point that the balloon exploded. If you launch a balloon that does not explode, it will slow its climb and then float. My best guess is that as the climb becomes more difficult due to the air thinning thus and thus the displaced gas is getting closer to the weight of the balloon and payload, but the air resistance is getting less. The size of the balloon is also increasing with height and has to push away a greater volume of air to climb, but the number of air molecules in the increased mass is way less. All up it produces a fairly linear climb. The graph (left) from uplift-1 shows he linear climb and the exponential fall with the parachute deployed. For the parachute, the air gets thicker as it falls and thus slows more as the altitude decreases. Note the initial glitch was caused by a strong thermal just as we let go of the balloon. Once out of the thermal the climb was very linear. It is obvious when the balloon burst.

Altitude and Air PressureAnother view of th same data is shown on the left from UpLift-1’s flight. Note that the rate of climb is linear, but increasing slightly. This would be affected by balloon size and fill amount. The rate of climb may be fast, slow or medium, but that will also change the rate of change of the volume. Not all graphs are the same, but they tend to be similar. Note also that the size of the parachute needs to change with the weight of the payload. The ideal speed for the average payload would be about 5mto 6m per second at the landing altitude, thus landing at Denver, Colorado, USA will require that you make the parachute a little bigger since it is nearly 2Km above sea level and the air is noticeably thinner.

There are good fill charts on the web allowing you to calculate the size of balloon and the amount of Helium or Hydrogen to determine the altitude at which the balloon will explode. More on that another time. The picture at top of page is a weather balloon exploding at altitude.

All up, air pressure can destroy a rocket if its speed is too great and it will destroy a weather balloon if the air pressure gets too low. Both rely on understanding the effects of air pressure, but the dynamics are totally different.

Too finish off the post here is a video of a balloon burst. They are spectacular, especially as the balloons grow to a huge diameter and fill the screen of most wide angle GoPros!:

Project ThunderStruck Update

More News on Project ThunderStruck

Thanks for the support in both contributions of dollars and more importantly at this stage, getting the word out and helping with services. Tim Gagnon is a fine graphic artist from Florida and he has pledge support by offering to design the mission patch. If you have any thoughts about his skills, have a look at his website. I believe that he has done one or two before!

KSCartist.comKSCartist.com Fine Art & Graphic Design from America’s Space Coast

Spending Your Contributions

Now a little detail on how we will spend your contributions. I did say it would cost $80,000 and that was no exaggeration. For a start there is about $10,000 worth of electronics to buy and test for the final flight and that is just the TV link, the telemetry, the control system for flight, cameras, video from the balloon to see the aircraft and the release, the tracking systems for the balloon and the tracking for the aircraft, the balloon flight termination system. The balloon for the final flight will cost over US$10,000 and the helium will cost $3,000. We will have to buy 2 radar transponders to warn aircraft of our position and they cost $2,000 to $5,000 each (and are heavy too).

Every two weeks we will do a weather balloon flight to test the latest systems for Project ThunderStruck and these will cost between $1,000 and $2,000 dollars each and take up our whole weekend traveling and staying in hotels. Petrol alone costs us $300 for the trip and launching and recovering our systems. Below is a video of a launch we did in Croatia. You will see that it is very difficult and requires a lot of materials and you don’t always recover them. So far we have recovered 100% of our payloads, but one day….

The GPS tracking system will be special as ordinary systems will not work at supersonic speeds. You need a special clearance to buy these and we need 2 and they cost $6,000 each.

The airframes will be expensive and we will need two. Jason has said that since most of our antennas are internal, the airframe cannot be made from carbon fibre alone or the signals will be severely attenuated. He will also need to have sections of the fuselage and possibly parts of the wing fabricated from a material such as Kevlar.

phased circula polarised antenna - double mushroomThe picture, right, is an antenna that may be on the aircraft and shows why we must locate it inside of the airframe. It is a little fragile to leave out in a 1,800kph airstream!

 

CASA – Australia’s Civil Aviation Safety Authority

Our Civil Aviation Safety Authority will also likely want us to travel to a remote part of the country for the big event. That will probably be one of our biggest costs – transporting all that gear and setting it up in the middle of nowhere and that is not a two person activity. We will need transport and accommodation for a huge crowd of people.

I look forward to to telling you more about the technical parts of the mission in the next update for Project ThunderStruck.

Project ThunderStruck Launched

Project ThunderStruck set to Break Barriers ThunderStruck vertical

by Robert Brand

Imagine a time when a 12 year student could build a supersonic glider 2.5m / 8ft long, attach it to a huge helium or hydrogen balloon and take it to the edge of space, release it, fly it into a dive back to earth that will reach Mach 1.5 / 1,800kph / 1,120mph and land it. Well that time is now and the student is Jason Brand from Sydney Secondary College / Balmain Campus. He is in year 7 and has already broken plenty of records. Breaking the sound barrier will be another cool record. His flight will break a lot of other records too.

  • Fastest RC plane
  • Fastest glider (of any type)
  • Highest flight
  • The longest dive
  • Youngest person or RC pilot to break the sound barrier
  • there are plenty more, but who’s counting

The event will take 6 to 9 months to complete and the testing started 3 weeks ago when a non-aerodynamic payload (space chicken from Clintons Toyota) reached speeds of 400kph / 250mph with its parachute deployed. This is because the air is pretty thin up at 33.33Km or 1/3 the way to space.

Rankins Springs Free Fall UpLift-19The space chicken was a simple test and we are now happy that we can easily fly at speeds of Mach 1.5 in the very thin air high up in the stratosphere. Left is a picture of the chicken falling back to earth at 400kph. Even the parachute could not slow the payload in the thin air. It slowed down as it reached 28Kms altitude and the air got a bit thicker.

We have started fund raising as we need help to cover the enormous cost of Project ThunderStruck.

If you can offer a dollar or two (every bit counts) we will love you. If you are rich and wish to really help, there are rewards. They are called “Perks” and we have some that I hope you will love. Some of our payloads will go supersonic before the big event, but they will not be aircraft. We might even donate one of our supersonic payloads to a generous contributor.

CLICK HERE TO DONATE with PAYPAL or on the Project ThunderStruck image at top right of the website
Below is the story from the FundRazr Website

Have a Credit or Debit card. We will have a contribution link in a couple of days!

Project ThunderStruck set to Inspire Kids Worldwide.

Fighter jets break the sound barrier every day, but this radio controlled aircraft has no engine, weighs 9Kg (20lbs), is 2.5m (8 ft) long. So the pilot must be a really experience Top Gun to fly this plane at 1,800kph (1,120mph) Well, no. His name is Jason brand and he
is 12 years old
. Can he make this a reality? Yes, he has the experience and the skills. More on that later.

So Why is this Important?

This is probably one of the most important projects that you can support. This is beyond the ability of almost every adult on the
planet, yet a 12 year old student is set to inspire kids around the world with a daring project that is pure STEM – Science Technology Engineering Mathematics. It will make the seemingly impossible the domain of the young if they choose to break down the barriers imposed by themselves or others. Not only that, there is real science going on here.

Jason’s father, Robert Brand, is a well known space entrepreneur. He is designing and testing small winged re-entry vehicles. He was
discussing with Jason the testing fo the transonic phase of the re-entry, that is, the part of the flight transitioning the sound barrier. Jason proposed that he create Project ThunderStruck and that his father asist with the project management.

The Cost

That is the hard part. We will have to do lots of testing and even the record breaking event will cost about $30,000 alone. The total cost will be $80,000 but we will only need $20,000 from crowd funding. If we make more, it will make our fundraising from sponsors a lot easier. Sponsors tend to come on board later, once they see progress.

Your Assistance is Essential

Your help now is essential. It gets us started immediately. Flying balloons to the edge of space for testing is an expensive exercise and we have a 7 hour drive each way to get into areas of low air traffic away from the major trunk routes. We also have to buy a lot of radio systems to allow remote control from the ground when the glider is up to 100kms distance.

Who is Jason Brand?

He is a 12 y/o student from Sydney Secondary College, Balmain Campus in Sydney, Australia.

He carried out his first High Altitude Balloon (HAB) project at age 9 and was so inspired that he sat for his amateur radio license at 9 years old. Since then he has launched a total of 19 HAB flights and recovered all 19. Some flights were in Croatia where mountains, swamps and landmines are risks not seen in Australia. He is also the Student Representative for Team Stellar – A Google Lunar X-Prize team attempting to get a rover onto the moon.

J20130414 Jason Brand on the Fuzzy Logic Science Showason appears on Radio and TV regularly and the picture right shows him talking about HAB flights on Canberra’s Fuzzy Logic Science Show in 2013. He is also a member of the Australian Air League, Riverwood Squadron. He plans to solo on his 15th birthday.

His father Robert Brand is an innovator in creating low cost solutions for spaceflight. He speaks regularly at international conferences, is a regular guest lecturer on aerospace at Sydney University, writes about aerospace and takes a very “hands on” approach to space. He supports Jason’s project fully.

How will ThunderStruck work?

The same way that the first pilots broke the sound barrier: in a steep dive. The problem is that since there is no engine and the biggest issue is air resistance, Jason will launch the aircraft from over 40km or nearly half way to space! He will get it there on a high altitude balloon. There the air is very thin. A fraction of one percent of the air at sea level. During the dive, the craft will accelerate to well over Mach 1 and less than Mach 2 and will need to be controllable by its normal control surfaces to pass as an aircraft. As the air thickens at low altitudes, the craft will slow and with the application of air brakes will slow and level off for normal flight to the ground.

The Technology

We will have a camera in the nose of the aircraft and it will transmit TV images to the pilot on the ground. Jason will be either in a darkened room with a monitor or wearing goggles allowing him to see the camera. This provides what is known as First-person Point of View (FPV). The aircrafts instruments will be overlaid on the video signal. This is known as “On Screen Display” or OSD. Below is a view typical of what will be seen by Jason as he lands the craft.

osdThe video signal must travel over 100kms to be assured of the craft being in the radius of the equipment. Similarly we must send commands to the control surfaces of the radio controlled aircraft. Again this must work at distance over 100kms. The craft has ailerons, elevators and rudder as well as airbreaks and other systems that need to be controlled. We will use a 10 channel system to ensure that we have full control of every aspect of the craft.

We will have to buy a $5,000 GPS unit capable of sampling at what is essentially the speed of a missile. These are highly restricted items, but essential. We will record the speed with both this unit and radar. The unit will record to an SD card and also send back telemetry every second. It is essential to knowing the speed during the flight rather than waiting until after the event. We will also need a radar responder to allow other aircraft and air traffic controllers to know where our craft is at any time.

The Big Event

We can expect global TV News coverage of the event and many records to be broken. The day will start by filling a large Zero Pressure Balloon like the one pictured below.

OLYMPUS DIGITAL CAMERAThe balloon will carry the aircrafy to over 40km where it will be released and go into a steep dive and break the sound barrier. As the air thickens, the speed will slow and the craft will be pulled out of the dive and levelled off to drop speed. The aircraft will eventually land and data and video records will be recovered. We will already know the top speed, but there is nothing like solid data rather than  radio telemetry that may miss the odd data packet.

There will be opportunities to attend, but it is likely to be in a rather remote part of the state. The flight will be broadcast over the Internet and the opportunity to track and follow the flight will be available to all. All up the opportunity to be involved is high and the science and inspiration will be out of this world. Project ThunderStruck is set to thrill.

Visit our wotzup.com website for more space and balloon stories.

We are bringing our Projectthunderstruck.org site early in October.

Zero Pressure Balloon Converter

OLYMPUS DIGITAL CAMERAWeather Balloon to Zero Pressure Balloon Converter.

By Robert Brand

Two weeks ago I was a guest lecturer in Aerospace at a Sydney University spoke about the current space projects I am involved in. It was good to see interest from some students to take part in some of the activities. I stayed on to listen to the second guest lecturer talk about high energy particles and there effects on astronauts and also equipment.

Following the lectures I was invited to talk about a difficult project of taking a science experiment to the stratosphere and holding it there for 3 hours. Now this creates a real challenge. It can either be done by a seriously expensive Zero Pressure Balloon (ZPB), shown in the picture at right, or it needs some way of holding a weather balloon below it burst point, both are not ways i would like to think about. Either big dollars or big problems.

My solution is to turn the Weather Balloon into a ZPB before the envelope pops and the lot comes down. I have designed a Weather Balloon to Zero Pressure Balloon Converter. Due to the commercial ramifications, I cannot give the fine details of the specific way we will do this or the materials used, but as you will obviously realise, it means opening up the balloon canopy so the helium (or Hydrogen) stops expanding the balloon fabric thus the balloon should then find a floating point, provided that the canopy is not too elastic.

Since this will require additional weight and we need to get extreme height to be in the stratosphere at a required altitude and we don’t want the risk of the canopy bursting early, I expect that it will require 2-3Kg weather balloons. Not cheap, but way less than ZPB that probably start at a price of US$7,000 or so.

Now for the hard part. We will need to test to see exactly what happens and how to control the eventual height based on gas fill, elasticity of the balloon, the balloon size / weight and the payload size.

The balloon should survive until next morning in the stratosphere when the sun’s UV will cause the envelope to deteriorate along with the punishment it has received during the night. Given that it is not fully stretched, it may in fact last much longer. This will the subject of more testing.

The next problem is that the stratospheric winds run east to west – the opposite of the jet stream – yes there is balance in the world! the difference is (from our experience over Australia) that the wind starts out light and then increases with strength at height. Several times we have seen stratospheric winds reaching 100kph at altitudes of 33.333Km (/3 the way to space). As that is our highest record and we have been involved in flights by others to that height, it seems a fairly linear increase over height and it may get faster at higher altitude. Only tests will tell, but 3 hours at 33.33Km is a long drive. It means carefully planning our launch points and recovery points. In fact we may need to launch on days when the jet stream is fast to drag the payload a long way to the east (say 150km and then allow the winds in the stratosphere to pull it 300Km to the west and allow it to fall back through the jet stream with a big parachute, allowing time to pull the payload back to near the launch point.

With radio cutdown an option, we need to be close enough for that to work on UHF frequencies of to create a HF cutdown on much lower radio frequencies that will travel further.

Weather to ZPB converterAs APRS is not an option on commercial flights, We will use SPOT3 units in gimbals for the commercial tracking. For non commercial flights I have toyed with the idea of using the HAM radio based APRS to upLink commands for cutdown. As a final cutdown I am looking at a time based mechanism to terminate the envelope or cut down the payload. More testing!

As a  teaser, the photo to the right is some of the “plumbing” without the servo and other systems. It is intentionally difficult to see, but the point is that it is off the shelf technology that is very light weight. In fact not all of this mechanism flies – some is only there for the “fill” and another device (not shown) makes the final configuration. When the cutdown occurs, we will lose the servo and the plumbing – a total cost of about US$15. Total weight of equipment lost will be in the order of 200 grams and the balloon envelope will also be able to fall to earth but since it will not be blown to pieces, it will flutter to a soft landing. I expect to have a number of the mechanisms ready and off the shelf to provide services to customers that wish to have low cost long times in the stratosphere. Note, that if we can keep the payload closer to the lower parts of the stratosphere, the drift is negligible from our general experience for a three hour duration in the stratosphere.

Other benefits here are a new easy fill system that requires no more struggling with cable ties at the last moment while holding on to a big balloon. I expect that we will use a smaller version for smaller balloons. The weight is likely to be an additional 50 grams that we can factor in, but the benefits will be great in securing the payload and ensuring an easy and safe tie off in the final moments. Once we test that I will publish the arrangements. More on the Zero Pressure Balloon Converter in future posts.

Moving House – the Essential Workshop

Building a New Workshop in Limited Space.

Warning – mess in progress!

It seems simple – move house, but setting up my home office and rebuilding my aerospace workshop has been a demanding exercise, but we are on the last legs of the work. The workshop requires a lot of connectivity and power. It is a last ditch line of defense against loss of power and connectivity. So what does it have:

  • 240 volt mains power
  • 2 banks of 48v batteries
  • 2 x 12v feeds (from the 48v batteries via 2 down inverters)
  • 240 volt AC inverter
  • Provision for solar power DC (coming)
  • A wired data link to one of our Internet Service Providers (ISPs) – we have 2 x ADSL and one via cable
  • A dedicated PC
  • Off air TV and links to my NAT and media server
  • Links to my 2 digital TV records and receivers
  • HF, VHF and UHF antennas
  • HF 100w HAM transceiver
  • APRS Kenwood D710 UHF and VHF transceiver
  • Test equipment.
  • Video surveillance (and its recording media and interface to the Internet is not necessarily in the garage).
  • Oh yes, tools of course and a small bar refrigerator for summer
  • Also soon we will have an air compressor and a power generator.

In fact we have less space than at our old house, but we will have much better facilities. This means it is currently hard to place the tools anywhere until we are finished, but you will get the idea of what it will look like. Jason and I will have opposite sides of a workbench. At the moment a smaller bench top is in place to make it easy during construction.

In the picture below you can see the smaller workbench covered with tools and construction gear. Also you can see the two racks for power and radio equipment. Beside them you can see the sets of small draws for small objects. Behind the workbench are some of the test equipment and lab power supplies, speakers and some of the outlets that will go on the strip of word below the shelf. The bench top will be twice as wide as the one shown here. Under the all in one PC in the left side of the shelving, you can see Jason’s HF radio and antenna tuner.

It takes a while to set this all up. Please excuse the mess for one more week until finished.

Workshop being built

Below you will see the wooden strip that will house a variety of inputs and outputs. I am holding one unit with 3 stereo inputs or outputs, an “N” connector and 2 earth points. As I will be drilling out the wood, I will not need the mounting blocks so the panels will be flush with the wooden surface. Other units have a variety of RF connectors, RJ45 data connectors, switched 12 v outlets, switched 50V outlets, Speaker connectors, USB connectors, mains connectors and much more. I was drilling the holes in the wood for the panels when I took this photo – you can see the sawdust below the panel on the next shelf down.

DSCF2108

Below I have secured power boards, audio amplifiers and a data switch under the shelf to save space. Below the data switch and to the right you can see one of the units to go on the wooden panel. It has the RJ45 and the switched 12 supply – these are connected via circuit breaker of course. You can see the LED to indicate that power is present.

Workshop being built

Below: Of course what every aerospace workshop needs – a good supply of helium gas.

Workshop being built helium bottles

I will revisit the workshop when finished and you will see the final outcome. This is a work in progress and although there is a lot of stuff on the workbench, this will disappear as we become more organised. Soon we will have peg board to hang the large tools and better organisation of the stuff currently stored in boxes.

UpLift-2

Australian Student (12) to Attempt Breaking the Sound Barrier with Radio Controlled Aircraft

UpLift-2Jason Brand to Attempt Breaking the Sound Barrier with Model Aircraft.

In the next 12 months, Jason Brand will attempt to break the sound barrier. He is a 12 year old student from Sydney Secondary College, Balmain Campus and is a regular kid with a passion for aerospace. Not surprising as his father, Robert Brand, is one of Australia’s leading space entrepreneurs.

The event will be a huge media attraction as nothing like this has been attempted before, especially by a 12 year old Student. It will consist of a zero pressure balloon ride by the aircraft to nearly 40Km altitude. The aircraft will be released and immediately be placed into a vertical dive as Jason pilots the vehicle by remote control. He will be wearing goggles that will allow him to see the view from the cockpit and all the important instrumentation. This Point Of View (POV) feed and possibly a HD feed will be available for a live feed for the media during the event. HD TV images will be recorded in memory aboard the aircraft.

pressure wavesJason has been studying supersonic wind flow over the control surfaces and the the loss of laminar flow away from control surfaces. Add to this the drag of shock waves. He and his father have come up with a design that has minimal laminar flow issues and low drag to ensure that Jason can maintain control as the aircraft exceeds the sound barrier by as much as possible. He has also been studying Mcr and Mdr and P and a whole lot of other important factors . Look them up! Yes the flight will be similar to the original sound barrier flights by pilots such as Chuck Yeager.

The flight will involve shifting the centre of gravity during the super sonic and sub sonic flight stages and retracting the supersonic spike during normal flight. The craft will be using an ITAR controlled GPS system that is capable of operating at well over the speed of sound. Video feeds will be available for the press in real time and HD video will be stored on the aircraft in memory as will be the GPS sampling.

UpLift-1 Launch with Jason BrandJason’s interest in “what’s up there” dates back to 2009 when he was 9 years old. His father decided to launch a weather balloon to the stratosphere and recover the payload and the camera. It was a great success. They launched the first balloon from the sleepy town of Rankin Springs in central NSW. They chased the balloon with radio tracking and the flight progress, with Google terrain was broadcast on the Internet during the flight. The jet stream was slow that day and they were sitting in the shade having lunch when the balloon burst at 24Km and the payload started its decent. After a few lessons in getting to the right field through a maze of gates and fences, they recovered their first payload. Today, Jason, along with his father are veterans of 18 flights and 18 recoveries. a 100% record and they intend keeping that way through science. The picture above is Jason picking up a video camera from a payload while the still camera just happened to snap his picture. After the first balloon flight he got his Foundation Amateur Radio Operators License (HAM) by doing a course at the Waverley Amateur Radio Club. He is now passionate about radio systems in regards to assisting with his goals in Aerospace.

IMG_1883His love balloon flights and model aircraft has grown. He recently designed and built a 1.5 horsepower tricopter which can lift 2Kg of load. He has also traveled to Croatia at the invitation of Team Stellar. Jason is the Australian Student Representative for Team Stellar – a Team in the Google Lunar X-Prize. He and his father (Head of Communications, Tracking and Data for Team Stellar) were invited to Croatia to launch Student payloads into the stratosphere – a difficult task in such a small country where the need to keep the balloon and payload within the borders is paramount. Add to that the large amount of forested land, swamps and mountains; not to mention the massive problem of leftover land mines from the recent wars with bordering countries. The flights were using the largest balloons and achieved a height of over 30Kms, one reaching 33.33km – one third of the way to space.

Jason spoke in front of many scientists, teachers  and engineers over recent years including Teachers at Science Week in Albury, Engineers Australia and the Skeptics group in Croatia. He has appeared on TV in Croatia and Australia. Below is a recent interview of a major balloon event in Croatia where Jason was a key person in the project.

The attempt will cost $60,000 and he is seeking sponsorship. One Sydney University has offered assistance and resources such as wind tunnel testing. The attempt will be with CASA approval and may be required to be located away from most air traffic in remote areas of Australia.

If you are interested in sponsoring the event please contact via homepc@rbrand.com

Media Contact: Robert Brand (International) +61 448 881 101   (national) 0448 881 101

Pico Balloon Update

Andy Balloon altitude over AustraliaPico Balloon Departs Australia

Andy’s Pico Balloon Update: It has now passed over the bottom of Fraser Island in SE Queensland and out to sea.

Next stop may be South America in a week’s time. We do not expect to hear from the balloon until then, but it may pass over New Zealand or Tonga.

At right is the altitude details from the spacenear.us website. The balloon took about 2 hours to get to just over 8km altitude and because it is a foil balloon and cannot expand, it then sits at that altitude day and night. You can see a small dip as the sun sets until it warms up again the next day. It then rises as the balloon skin expands in the heat. Air pressure will also cause the balloon to rise or fall as will vertical air currents.

The balloon will change APRS frequencies as it crosses different longitudes but the RTTY frequencies stay standard across the world.

Below is the last track of the balloon crossing the coast today.

Andy says that the payload weighs 13 grams or less than half an ounce and consists of:

  • APRS and RTTY transmitters (10mW)
  • A GPS receiver
  • rechargeable batteries
  • solar panel
  • Insulation

The gas is helium and the metal foil balloon should not deteriorate much in a week. The gas also does not leak out very much from a foil balloon compared to a latex or other non-metal balloon.

Note that because the balloon is so light, it is classified as a small balloon and does not need to involve CASA to be able to fly such balloons.

Andy Balloon departing Australia

UpLift-1 Launch (Archives)

UpLift-1 Takeoff 28th Dec 2011.

UpLift-1 launch weatherBefore we even left home we needed a massive list to make sure that we did not leave anything behind. After all, a 600km / 400 mile trip for nothing would not be a lot of fun. It was a huge list for such a small balloon and payload. It included the balloon, parachute, payload, helium, spare balloon, test equipment, hoses, cameras, tripod, 2-way radios, tracking radios, decoders, computer, USB cables, mobile phones, car chargers and much, much more. But this is not about that story, this is launch day! We traveled to West Wyalong in NSW (Australia) and spent the night in a great little hotel ready for an early morning departure. We still had 100km / 60 miles to drive to the launch site. The first thing was to check the weather. We had already looked at a long distance forecast before setting the date as the Civil Aviation Safety Authority (CASA) in Australia have to issue an alert to pilots for our balloon. CASA have been wonderful UpLift-1 Launch site with Jason Brand age 9and amazingly helpful. A peek out the door reveals a perfect day for a balloon flight. The photo on right shot outside my hotel room reveals a brilliant day with little wind early in the morning. We packed the car and headed to Rankins Springs near Goolgowi. I had fallen in love with this little town in the middle of nowhere. With about 50 people living in town, it was just a speck on the map at the intersecting of some sealed main roads. What struck me was that it was a place that people cared about. The public places were clean and the grass cut, perfect for preparing a balloon flight.

We found a clear grassed area next to an old Railway water tank used for filling steam engines. The contrast was great – the old and the new. This story is going to be a bit instructive so lots and lots of pictures. First I had my son Jason (9) laidUpLift-1 fill - Latex Gloves out the clean plastic sheet for the filling operation. We placed items in the corner in case a breeze kicked up the corners and destroyed the balloon. We also used Latex gloves to stop acids and other oils from transferring from our hands to the balloon and potentially causing an early failure of the balloon when the UV and other chemicals in the air act on it. We could also have used clean cotton gloves. The problem there was two fold. Sweat from our hands filled the gloves and needed to be changed occasionally to prevent and drops from landing on the balloon. The second problem was that every time we wanted to use duct tape, our gloves stuck very well to the tape! That is me on the left taping the hose to the balloon to protect it and getting the gloves stuck to the tape. There were cable ties under the tape and I used the tape to protect the balloon from sharp edges. The cable ties held the balloon to the flexible PVC tube. I also had the other end of the tube over the balloon fill regulator on the helium tank. That was just sealed with duct tape.

It was then time to prepare the payload. I had decided to block off one of the port holes for the video camera as I wanted this balloon to rise quickly. I was also going to overfill the balloon above specifications to ensure that it would explode a bit earlier than normal. All precautions for a first flight. While we were preparing for the flight, Wally, one of the locals came by on his ride-on mower and remembered me calling in at the petrol / gas station a month earlier. He was excited that we had chosen his town for the launch and APRS Tracker being wrapped in bubble wrapwent off to find the kids in town so that they could join in with all the excitement. Wally was the unofficial “mayor” of the town! A lovely character that obviously cared about kids. The photo on the right shows me preparing the GPS transmitter (Amateur Radio APRS). I am wrapping it in bubble wrap as a thermal insulator to protect it from the cold at the outside air temperature at times during the flight will be between -40 (-40F) and -50C (-58F) or possibly even lower. The capsule is also made from Polystyrene so that too will provide some protection from the cold, but with openings for the camera, there will be some cold air entering the capsule. Care was taken to ensure the dipole antenna (the two gold wires) was mounted vertically in the capsule in the correct place and the small GPS receiver was on top so that it would get a strong signal from the GPS satellites orbiting the earth. The balloon was on a 10m (30ft) cord so that the antenna had no chance of puncturing the balloon. The final benefit was that the capsule would never land upside down so the GPS receiver would always be able to receive satellite signals and report its position once on the ground. Lots to consider. The batteries were also the best that we could buy. Failure was not an option and the cold can kill batteries. We also wanted UpLift-1 Tracker competethe transmitter to last for as long as it took to recover the balloon. The unit was switched on and the receiver in my car was used to checked it was operational and all systems working. The unit reported position, altitude, atmospheric pressure, payload temperature and battery voltage. All parameters where checked and normal. APRS normally will allow you to see the track on the Internet, but we were too far away from any receivers to register. That would only happen when the flight was high enough for the distant receivers to “see” the balloon – once it was high enough to overcome the radio shadow caused by the curvature of the earth, allowing “line of sight” radio signals to be heard. Similarly when we landed, we would lose the signal close to the ground. We were going to rely on the receiver in our car to pick up the transmitter signals and read the location. This would be super important in a couple of hour. More on that later. The photo at right show the transmitter with one layer of bubble wrap. Two more were added with the GPS receiver wrapped to the top – above the side that you can see the unit with care taken to get it the right way around.

UpLift-1 CapsuleThe camera batteries were charged the night before and the camera then required special care. We had it in a sealed box with desiccant overnight to ensure that there was as little moisture as possible in the camera. This would otherwise cause condensation during the flight and fog the images. It was inserted quickly into the housing and the almost closed housing was flushed with helium from the filler hose. This ensured that water in the air was removed and the housing was sealed. The camera was turned on and set to commence taking photographs – the counter on the front began incrementing every 30 seconds. Both the camera and the transmitter were mounted in the capsule. The picture shows the camera in place secured with blocks of polystyrene  and the transmitter in place with the GPS receiver at the top. The payload bay was covered and sealed with duct tape and the capsule was ready to fly. All that waited was to fill the balloon.

UpLift-1 Balloon FillWe had brought a large bed sheet to hold over the balloon in case the wind was too strong for a simple fill. The wind was light and we did not need this, but if we had we would have asked volunteers to hold each corner down while we filled the balloon. The balloon fill was simple, but we needed to measure the diameter to get the fill right. If we under filled the balloon then it might never burst or even rise fast enough and drift long distances before popping. Either way I had made a decision to lighten the payload UpLift-1 measuring the diameterby leaving out the video camera and to overfill the balloon slightly. It was, from the manufacturer’s specifications meant to be 1.2m (3.937ft) in diameter.  I was going to fill it to 1.35m (4.43ft). Since the day was sunny, it was easy to accurately measure the diameter. We simply used a tape measure across the centre of the shadow – perpendicular to the rising sun. This meant that any stretch of the shadow from the angle of the sun would not affect the measurement. In the picture at left you can see that the sun is behind me and Jason is in the right place. The local that was helping just needed to move the measure up closer to the camera to get the final measurement (the photo was a few seconds early). We had the right diameter now and were ready to remove the hose and secure the payload. The helium tank valve needs to be shut off at this point in case the hose gets pulled and the tank either topples or adds more helium to the balloon. If the tank falls, then you could damage the regulator.

This next operation was the most difficult part of the procedureUpLift-1 Securing the neck and the payload. We had already wrapped a cable tie in duct tape to lower the chance of tearing the balloon when inserted. it would secure the nylon cord that secures the parachute and payload. First though, we needed to cut away the cable ties securing the balloon to the hose – all without cutting the balloon. The protective duct tape was peeled away and side cutters were used to sever the heads of the cable ties. This kept sharp edges away from the balloon. That is me on the right cutting the cable ties away (sorry no close-ups). Once the hose is removed then the balloon needs to be sealed and secured. I have no photos of this but the fill tube of the balloon is folded once and then a second time (4 folds thick). The cable tie with duct tape that was prepared earlier was inserted in the middle of the bottom folds ready to secure the payload. I then secured the balloon and and its UpLift-1 ready to launch with help from the locals at Rankins Springsgas with three cable ties above that making them tight around the fill tube. It must be tight to keep the gas in during the flight, especially as the outside pressure gets down to a few percent of sea level and the inside pressure remains the same. I cut the loose ends of the cable ties and used duct tape to keep them from touching the balloon. The cable tie that secured the payload was looped and the payload tied to the balloon. Again duct tape was used to secure the knot holding the payload to the balloon. Nothing was left to chance. The knot used was a bowline and few half hitches – sufficient if you have the duct tape to stop them unraveling. We were ready to launch. The local mission control countdown team were assembled (all but one shy kid and a few adults) and provided the all essential countdown – that’s Wally in he green/yellow safety shirt.

UpLift-1 Launch with Jason BrandIt was a great moment. Rankins Springs’ first near space mission. The countdown proceeded with the kids leading the chant. At zero, my son Jason released the balloon and it was away. Note the old steam engine water tank behind Jason – the old and the new. At about 270 metres the distant APRS receivers saw the balloon’s transmissions and we breathed a sigh of relief that we would be able to track and recover the balloon. We saw the updates every 20 seconds on our smart phones with all the details of the flight. We watched as the balloon stayed in clear view right up to 5km. We kept losing site of the tiny white dot, but the odd reflective glint from the shiny black duct tape brought our eyes back to the tiny 1.35m (4.5ft) white dot up in the clear blue skies of central NSW.  It should be noted, that none of these photos have been altered. They are directly from a number of cameras. The colours have not been corrected! The final job was to pack the car and chase the balloon.

It was serendipity that the first photo snapped by the payload camera at around 270m (900ft) was of the town itself. A wonderful memento of the occasion.

Below is the photo from Rankins Springs. You can click on most of the photos above and below to see a large version of the image (requires that you click through an intermediate page). I have uploaded the image of the town in the highest format possible.

UpLift-1 Rankins Springs 60 seconds after launch

60 seconds after release (below). This photo looking east above Rankins Springs: