Morocco Mars SIM testing Methane detectors

What is Mars Median – FAQs

Morocco Mars Median SIM testing Methane detectors What, Why, How of Mars Median

Mars Median by Robert Brand       I wrote Wotzup to let people experience some fun space projects to do with space or even in space with basic opportunity like the ISS EarthKam. The Mars Median project is without doubt a major Mars mission that I was not expecting to ever discuss on these pages. I am excited to be able to bring you one of the most amazing personal adventures ever – the chance to let you share an incredible journey to Mars and the chance to bring you my personal experiences as we go forward to explore the red planet. To this end, we may have to delay or cancel other projects that we growing, but that is the nature of having limited time to do everything. This is a once in a lifetime opportunity to be the architect of a Mars mission and it happened all by a chance meeting with a couple of UK team members and myself in the US

What is Mars Median?

MEDIAN – Methane Detection by In-Situ Analysis with NanoLanders

A network of Methane detectors and wind direction sensors that can detect methane and as the wind changes and the methane covers different sensors over time, the source of the vent can be triangulated. The Mars Median network will be a 10 to 20Km ring with each node also being able to send its results to other nodes and eventually to a Mars rover or relay to a spacecraft and back to earth. The methane detection is for both biological or none biological sources. The rover will locate the vent and test for the origins of the methane. If a biological source, it will tell us that life exists or once existed on Mars. It is the project of a UK team and it not tied to any Space Agency or company.

Why?

The search for life outside of the Earth. Methane from biological sources is the goal. Mars Median cannot tell the difference, but a rover can. We would be looking to fly with a rover landing close by.

How did I get Involved?

Nick Howes

Nick Howes and Mars MedianI met Nick at Spacefest in 2012 when I was new to the whole event. I had been asked to speak on the work I was doing to engage everyday people in space. At this stage I was not actually looking at any work in Aerospace Engineering and it was his next question that dragged me into engineering. Nick told me about this incredibly important project called Median and he had asked experts how to land a payload of 10 to 20 nodes in a network across a wide area on Mars – not just a single spot. He said that he had been asking experts from all over the world and everyone had said it was impossible with today’s technology. My initial thoughts included balloon technology, but I had other systems in mind and told him it was 100% doable. Nick has been a real power house keeping Median going until it was almost an essential part of any Mars mission that involved rovers.

The Median Proposal had to be in within 2 weeks and was then the work of Jane MacArthur. She was also at Spacefest and was nervous about whether she would be able to make it happen. I remember sitting down on the last day of Spacefest and telling her she could do it and how important it was.

The proposal has to be submitted within 2 weeks. They had a lot of missing parts to their project. I had to come up with solutions to the following: the deployment of the probes from a canister on the back-shell, the braking in the atmosphere, the landing, the comms between the probes and the spacial awareness of the probes. orientation of the probes on the surface and the precise location of the probes. Finally transmitting the data from the probes to the new rover.

Jane MacArthur

Jane MacArthur and Robert Brand discuss Mars MedianHere is my response back in 2012:

“I may do little else that come up with ideas or I might look after all of these solutions. If i did, it would be a major part of the overall project so that is not likely. The answer was yes. I had solutions within the hour and even better ones by the next morning. All I can say is that the project is now doable. The solutions that are there at the moment may be thrown out in light of better ones, but it gives the project a serious green light at this time. There will be many years of developing even better solutions, but for now it is just a green light for the proposal and I will wait and see if they get to go forward before I do anything.  It is just the fact that they came and asked that I find amazingly refreshing. If it never goes forward, it has still changed my world forever.”

Jane went away and completed the submission in time and then completed the construction of the test detectors ready for testing in the Moroccan desert at a Mars SIM event. The picture at top left is a volunteer deploying a very close test of the detectors to see if the concept was sound.

I never found out about the test results, but you can read about Mars Median on Page 24 of the Moroccan SIM outline – Page 24. There are a wide range of experiments that you can also read about.

http://www.planete-mars.com/wp-content/uploads/2012/10/Dossier-de-presse-en-anglais.pdf

My Facebook post of this picture of Jane says:

“Before I depart [Spacefest], here is a picture of the lovely Jane MacArthur who made me an offer that I couldn’t refuse. A trip to Mars of course – well at least as part of a team doing a science experiment – if our proposal gets through! None the less – I am hooked. It is doable and I hope that it gets the green light for 2022. Jane you have rocked my trip to Spacefest in a great way!”

That was the last I heard from the 2013 tests until this week October 2016. All of a sudden, the Mars Median project is in full swing and progressed from basic concept to a fully funded project and testing here in Australia of the deployment system in march / April 2017. Initial expectations of being deployed with ESA’s rover in 2020 sank with the crash of their lander a week before this post.

I have met Jane since at a London Space Conference and she has become an amazing space scientist and has traveled to the most amazing places as part of her space work. I cannot tell you how jealous I am of her experiences in this regard.

Initial Tests:

Read the linked document above for how the tests were conducted and as we now know, they were a success.

Phase 2. All Hands to the Pump:

Nick contacted a few days ago on Social Media and publicly stated – your landing proposal utilising impactors and the communications and mapping system has been accepted “Lock, Stock [and Barrel]”

The testing is being fast tracked for March/April 2017 here in Australia and I am heading that up – plus the comms and mapping work. I have already contacted CASA and discussed the opportunity to test with restricted air space and it is all doable.

The University of Central Lancashire (UCLAN) is running the Mars Median mission and building the impactors. The timeline at time of printing  indicated:

“Timeline is that the aerodynamic modeling is ongoing NOW, using ANSIS.. that will feed into final design then build. Initial high velocity gun testing possibly in the UK and possibly some shake and bake testing at Goddard, then thinking about March/April 2017 getting prototypes over to you (Robert Brand) with the release mechanism to do drop tests. Internals will be Arduino style systems (maybe PI’s ) with test rigs in place”.

It looks like locating the Mars Median Project on the heat shield of another another mission is an easier and a safer bet than the backshell, so we will test this concept early next year.

More on Mars Median shortly. Please feel free to ask questions.

Mars Quad Rotor Test Flight Murdoch University PlusComms HABworx

A New Mars Challenge

Mars Quad Rotor Test Flight Murdoch University PlusComms HABworxby Robert Brand

Flying Around Mars

I promised real space adventure when I started WotzUp and I believe that we have delivered, but this post is starting to get serious. We have been approached by Murdoch University to test a Mars Capable Quad-copter in flight at 35km altitude here on Earth!

Flight on Mars will be very difficult and testing will be a huge component in convincing a sponsor to take the technology to Mars. If ti was easy, everyone would be doing it.

read more

Australian Weather Balloon Sales

Totex 100 gram Red BalloonWeather Balloon Sales Opening Soon in Australia.

We will be setting up an online shop and selling weather balloons, balloon equipment, radio systems and much more for those interested in flying High altitude weather balloons and much more. I will also be selling general comms equipment from time to time and HAM radio equipment to verified HAM radio operators. Keep watching!

Note that we are located in Australia and the shop is for the convenience of Australians who may not be able to wait for a delivery from overseas. We will not be the cheapest, but we will be the best.

Right now I have ample stock of 100 gram Totex Red Balloons ($20 each),Postage is $15 for each 4 balloons delivered in Australia +GST

In 4 weeks, we take delivery of many boxes of brand new Totex weather balloons. If you want an Australian source of weather balloons in small quantities, we are now taking pre-orders for the balloons.Do not wait until they arrive as some sizes may be sold out.

On aIMG_5039bout 24th May 2015 we should have the following beige weather balloons in stock:
500 gram $80 + $20 Australian delivery + GST
800 gram $120 + $20 Australian delivery + GST
1,500 gram $190 + $30 Australian delivery + GST

All brand new Totex. Our new shop will be:

http://habworx.com

Overseas orders are exempt from GST, but will have an additional handling fee and a higher delivery fee. No details yet as I am focusing on the Australian market. If you have a need for bigger quantities than 3, we can start to discount. We have great prices for orders of 12 with 4 weeks lead time.

Call 0448881101 for details

I also have 2 x 3kg weather balloons. These 3Kg balloons are well over their expiry date (maybe about 3 years old – good for displays ($150 each). If you want any of these you will need to contact me on 0448 881 101.

I will calculate postage by Australia post depending on what you order. eg 500 gram express post bag can handle 4 X 100 gram balloons + bubble wrap and costs $15. The same to New Zealand will be $20 postage; to the US $25 postage and to anywhere else $30 postage.

Balloon specs here: http://www.esands.com/pdf/Meteorology/Totex_TA_Balloons_070213_web.pdf for Totex

We will be supplying NEW Totex weather balloons, although we may have the odd balloon from another supplier for time to time. I can also organise large orders if needed.

At this stage, payment will be via a bank deposit. If you wish to chose PayPal, we will need to charge extra for the sees that they extract! Please call 0448 881 101 for sales. It is essential that you leave a 10 second message with “balloons” as the first word.

We will soon be able to RENT:  Helium bottles, (E), regulators, tracking systems including HAM radio APRS transmitters, HAM radio APRS enables handhelds, Filling tubes, Cable ties, hose, bubble wrap, tapes and much more mostly for pickup from Sydney. Shipping can be arranged, but not for the gas bottles.

Totex 100 gram Red Weather Balloon Box

Project ThunderStruck Update

More News on Project ThunderStruck

Thanks for the support in both contributions of dollars and more importantly at this stage, getting the word out and helping with services. Tim Gagnon is a fine graphic artist from Florida and he has pledge support by offering to design the mission patch. If you have any thoughts about his skills, have a look at his website. I believe that he has done one or two before!

KSCartist.comKSCartist.com Fine Art & Graphic Design from America’s Space Coast

Spending Your Contributions

Now a little detail on how we will spend your contributions. I did say it would cost $80,000 and that was no exaggeration. For a start there is about $10,000 worth of electronics to buy and test for the final flight and that is just the TV link, the telemetry, the control system for flight, cameras, video from the balloon to see the aircraft and the release, the tracking systems for the balloon and the tracking for the aircraft, the balloon flight termination system. The balloon for the final flight will cost over US$10,000 and the helium will cost $3,000. We will have to buy 2 radar transponders to warn aircraft of our position and they cost $2,000 to $5,000 each (and are heavy too).

Every two weeks we will do a weather balloon flight to test the latest systems for Project ThunderStruck and these will cost between $1,000 and $2,000 dollars each and take up our whole weekend traveling and staying in hotels. Petrol alone costs us $300 for the trip and launching and recovering our systems. Below is a video of a launch we did in Croatia. You will see that it is very difficult and requires a lot of materials and you don’t always recover them. So far we have recovered 100% of our payloads, but one day….

The GPS tracking system will be special as ordinary systems will not work at supersonic speeds. You need a special clearance to buy these and we need 2 and they cost $6,000 each.

The airframes will be expensive and we will need two. Jason has said that since most of our antennas are internal, the airframe cannot be made from carbon fibre alone or the signals will be severely attenuated. He will also need to have sections of the fuselage and possibly parts of the wing fabricated from a material such as Kevlar.

phased circula polarised antenna - double mushroomThe picture, right, is an antenna that may be on the aircraft and shows why we must locate it inside of the airframe. It is a little fragile to leave out in a 1,800kph airstream!

 

CASA – Australia’s Civil Aviation Safety Authority

Our Civil Aviation Safety Authority will also likely want us to travel to a remote part of the country for the big event. That will probably be one of our biggest costs – transporting all that gear and setting it up in the middle of nowhere and that is not a two person activity. We will need transport and accommodation for a huge crowd of people.

I look forward to to telling you more about the technical parts of the mission in the next update for Project ThunderStruck.

Project ThunderStruck Launched

Project ThunderStruck set to Break Barriers ThunderStruck vertical

by Robert Brand

Imagine a time when a 12 year student could build a supersonic glider 2.5m / 8ft long, attach it to a huge helium or hydrogen balloon and take it to the edge of space, release it, fly it into a dive back to earth that will reach Mach 1.5 / 1,800kph / 1,120mph and land it. Well that time is now and the student is Jason Brand from Sydney Secondary College / Balmain Campus. He is in year 7 and has already broken plenty of records. Breaking the sound barrier will be another cool record. His flight will break a lot of other records too.

  • Fastest RC plane
  • Fastest glider (of any type)
  • Highest flight
  • The longest dive
  • Youngest person or RC pilot to break the sound barrier
  • there are plenty more, but who’s counting

The event will take 6 to 9 months to complete and the testing started 3 weeks ago when a non-aerodynamic payload (space chicken from Clintons Toyota) reached speeds of 400kph / 250mph with its parachute deployed. This is because the air is pretty thin up at 33.33Km or 1/3 the way to space.

Rankins Springs Free Fall UpLift-19The space chicken was a simple test and we are now happy that we can easily fly at speeds of Mach 1.5 in the very thin air high up in the stratosphere. Left is a picture of the chicken falling back to earth at 400kph. Even the parachute could not slow the payload in the thin air. It slowed down as it reached 28Kms altitude and the air got a bit thicker.

We have started fund raising as we need help to cover the enormous cost of Project ThunderStruck.

If you can offer a dollar or two (every bit counts) we will love you. If you are rich and wish to really help, there are rewards. They are called “Perks” and we have some that I hope you will love. Some of our payloads will go supersonic before the big event, but they will not be aircraft. We might even donate one of our supersonic payloads to a generous contributor.

CLICK HERE TO DONATE with PAYPAL or on the Project ThunderStruck image at top right of the website
Below is the story from the FundRazr Website

Have a Credit or Debit card. We will have a contribution link in a couple of days!

Project ThunderStruck set to Inspire Kids Worldwide.

Fighter jets break the sound barrier every day, but this radio controlled aircraft has no engine, weighs 9Kg (20lbs), is 2.5m (8 ft) long. So the pilot must be a really experience Top Gun to fly this plane at 1,800kph (1,120mph) Well, no. His name is Jason brand and he
is 12 years old
. Can he make this a reality? Yes, he has the experience and the skills. More on that later.

So Why is this Important?

This is probably one of the most important projects that you can support. This is beyond the ability of almost every adult on the
planet, yet a 12 year old student is set to inspire kids around the world with a daring project that is pure STEM – Science Technology Engineering Mathematics. It will make the seemingly impossible the domain of the young if they choose to break down the barriers imposed by themselves or others. Not only that, there is real science going on here.

Jason’s father, Robert Brand, is a well known space entrepreneur. He is designing and testing small winged re-entry vehicles. He was
discussing with Jason the testing fo the transonic phase of the re-entry, that is, the part of the flight transitioning the sound barrier. Jason proposed that he create Project ThunderStruck and that his father asist with the project management.

The Cost

That is the hard part. We will have to do lots of testing and even the record breaking event will cost about $30,000 alone. The total cost will be $80,000 but we will only need $20,000 from crowd funding. If we make more, it will make our fundraising from sponsors a lot easier. Sponsors tend to come on board later, once they see progress.

Your Assistance is Essential

Your help now is essential. It gets us started immediately. Flying balloons to the edge of space for testing is an expensive exercise and we have a 7 hour drive each way to get into areas of low air traffic away from the major trunk routes. We also have to buy a lot of radio systems to allow remote control from the ground when the glider is up to 100kms distance.

Who is Jason Brand?

He is a 12 y/o student from Sydney Secondary College, Balmain Campus in Sydney, Australia.

He carried out his first High Altitude Balloon (HAB) project at age 9 and was so inspired that he sat for his amateur radio license at 9 years old. Since then he has launched a total of 19 HAB flights and recovered all 19. Some flights were in Croatia where mountains, swamps and landmines are risks not seen in Australia. He is also the Student Representative for Team Stellar – A Google Lunar X-Prize team attempting to get a rover onto the moon.

J20130414 Jason Brand on the Fuzzy Logic Science Showason appears on Radio and TV regularly and the picture right shows him talking about HAB flights on Canberra’s Fuzzy Logic Science Show in 2013. He is also a member of the Australian Air League, Riverwood Squadron. He plans to solo on his 15th birthday.

His father Robert Brand is an innovator in creating low cost solutions for spaceflight. He speaks regularly at international conferences, is a regular guest lecturer on aerospace at Sydney University, writes about aerospace and takes a very “hands on” approach to space. He supports Jason’s project fully.

How will ThunderStruck work?

The same way that the first pilots broke the sound barrier: in a steep dive. The problem is that since there is no engine and the biggest issue is air resistance, Jason will launch the aircraft from over 40km or nearly half way to space! He will get it there on a high altitude balloon. There the air is very thin. A fraction of one percent of the air at sea level. During the dive, the craft will accelerate to well over Mach 1 and less than Mach 2 and will need to be controllable by its normal control surfaces to pass as an aircraft. As the air thickens at low altitudes, the craft will slow and with the application of air brakes will slow and level off for normal flight to the ground.

The Technology

We will have a camera in the nose of the aircraft and it will transmit TV images to the pilot on the ground. Jason will be either in a darkened room with a monitor or wearing goggles allowing him to see the camera. This provides what is known as First-person Point of View (FPV). The aircrafts instruments will be overlaid on the video signal. This is known as “On Screen Display” or OSD. Below is a view typical of what will be seen by Jason as he lands the craft.

osdThe video signal must travel over 100kms to be assured of the craft being in the radius of the equipment. Similarly we must send commands to the control surfaces of the radio controlled aircraft. Again this must work at distance over 100kms. The craft has ailerons, elevators and rudder as well as airbreaks and other systems that need to be controlled. We will use a 10 channel system to ensure that we have full control of every aspect of the craft.

We will have to buy a $5,000 GPS unit capable of sampling at what is essentially the speed of a missile. These are highly restricted items, but essential. We will record the speed with both this unit and radar. The unit will record to an SD card and also send back telemetry every second. It is essential to knowing the speed during the flight rather than waiting until after the event. We will also need a radar responder to allow other aircraft and air traffic controllers to know where our craft is at any time.

The Big Event

We can expect global TV News coverage of the event and many records to be broken. The day will start by filling a large Zero Pressure Balloon like the one pictured below.

OLYMPUS DIGITAL CAMERAThe balloon will carry the aircrafy to over 40km where it will be released and go into a steep dive and break the sound barrier. As the air thickens, the speed will slow and the craft will be pulled out of the dive and levelled off to drop speed. The aircraft will eventually land and data and video records will be recovered. We will already know the top speed, but there is nothing like solid data rather than  radio telemetry that may miss the odd data packet.

There will be opportunities to attend, but it is likely to be in a rather remote part of the state. The flight will be broadcast over the Internet and the opportunity to track and follow the flight will be available to all. All up the opportunity to be involved is high and the science and inspiration will be out of this world. Project ThunderStruck is set to thrill.

Visit our wotzup.com website for more space and balloon stories.

We are bringing our Projectthunderstruck.org site early in October.

Zero Pressure Balloon Converter

OLYMPUS DIGITAL CAMERAWeather Balloon to Zero Pressure Balloon Converter.

By Robert Brand

Two weeks ago I was a guest lecturer in Aerospace at a Sydney University spoke about the current space projects I am involved in. It was good to see interest from some students to take part in some of the activities. I stayed on to listen to the second guest lecturer talk about high energy particles and there effects on astronauts and also equipment.

Following the lectures I was invited to talk about a difficult project of taking a science experiment to the stratosphere and holding it there for 3 hours. Now this creates a real challenge. It can either be done by a seriously expensive Zero Pressure Balloon (ZPB), shown in the picture at right, or it needs some way of holding a weather balloon below it burst point, both are not ways i would like to think about. Either big dollars or big problems.

My solution is to turn the Weather Balloon into a ZPB before the envelope pops and the lot comes down. I have designed a Weather Balloon to Zero Pressure Balloon Converter. Due to the commercial ramifications, I cannot give the fine details of the specific way we will do this or the materials used, but as you will obviously realise, it means opening up the balloon canopy so the helium (or Hydrogen) stops expanding the balloon fabric thus the balloon should then find a floating point, provided that the canopy is not too elastic.

Since this will require additional weight and we need to get extreme height to be in the stratosphere at a required altitude and we don’t want the risk of the canopy bursting early, I expect that it will require 2-3Kg weather balloons. Not cheap, but way less than ZPB that probably start at a price of US$7,000 or so.

Now for the hard part. We will need to test to see exactly what happens and how to control the eventual height based on gas fill, elasticity of the balloon, the balloon size / weight and the payload size.

The balloon should survive until next morning in the stratosphere when the sun’s UV will cause the envelope to deteriorate along with the punishment it has received during the night. Given that it is not fully stretched, it may in fact last much longer. This will the subject of more testing.

The next problem is that the stratospheric winds run east to west – the opposite of the jet stream – yes there is balance in the world! the difference is (from our experience over Australia) that the wind starts out light and then increases with strength at height. Several times we have seen stratospheric winds reaching 100kph at altitudes of 33.333Km (/3 the way to space). As that is our highest record and we have been involved in flights by others to that height, it seems a fairly linear increase over height and it may get faster at higher altitude. Only tests will tell, but 3 hours at 33.33Km is a long drive. It means carefully planning our launch points and recovery points. In fact we may need to launch on days when the jet stream is fast to drag the payload a long way to the east (say 150km and then allow the winds in the stratosphere to pull it 300Km to the west and allow it to fall back through the jet stream with a big parachute, allowing time to pull the payload back to near the launch point.

With radio cutdown an option, we need to be close enough for that to work on UHF frequencies of to create a HF cutdown on much lower radio frequencies that will travel further.

Weather to ZPB converterAs APRS is not an option on commercial flights, We will use SPOT3 units in gimbals for the commercial tracking. For non commercial flights I have toyed with the idea of using the HAM radio based APRS to upLink commands for cutdown. As a final cutdown I am looking at a time based mechanism to terminate the envelope or cut down the payload. More testing!

As a  teaser, the photo to the right is some of the “plumbing” without the servo and other systems. It is intentionally difficult to see, but the point is that it is off the shelf technology that is very light weight. In fact not all of this mechanism flies – some is only there for the “fill” and another device (not shown) makes the final configuration. When the cutdown occurs, we will lose the servo and the plumbing – a total cost of about US$15. Total weight of equipment lost will be in the order of 200 grams and the balloon envelope will also be able to fall to earth but since it will not be blown to pieces, it will flutter to a soft landing. I expect to have a number of the mechanisms ready and off the shelf to provide services to customers that wish to have low cost long times in the stratosphere. Note, that if we can keep the payload closer to the lower parts of the stratosphere, the drift is negligible from our general experience for a three hour duration in the stratosphere.

Other benefits here are a new easy fill system that requires no more struggling with cable ties at the last moment while holding on to a big balloon. I expect that we will use a smaller version for smaller balloons. The weight is likely to be an additional 50 grams that we can factor in, but the benefits will be great in securing the payload and ensuring an easy and safe tie off in the final moments. Once we test that I will publish the arrangements. More on the Zero Pressure Balloon Converter in future posts.

Space Chicken? Not Quite.

Space Chicken Flight Matches our RecordUpLift-19 Space Chicken

UpLift-19 continues our incredible success in launching and recovering payloads. That is 19 launches in the UpLift series and 19 recoveries. UpLift-19 was a bit of a record breaker for us in that it is the smallest of our balloons to reach 1/3 the way to space. Yes, that is right, 1/3 the way to space with a 1.25 kilogram payload. So not quite a space chicken, but what is in a few words said our customer.That is 2.75lbs for those few countries still using outdated measurements systems. I think that there are three left out of step with the world! (I do like to have a gentle dig at my US friends). Oh yeh – our first chicken too.

We managed to reach exactly the same height with a 3Kg balloon that we launched in Croatia, but that was carrying 2.5Kgs of payload. So what else was so special about the flight. Well, we cracked the best method of doing photography and have our clearest and most colourful shots ever taken from a balloon flight! It is hard to say what we like best about the flight, but it was a flight that we never thought would get of the ground. We had to launch in 40kph winds. Errhhh, that is 25mph for my non metric friends. That is 22 knots and please note that knots are acceptable in the metric world as they are not imperial measurements, but linked closely with dividing up the world into useable chunks – from the old sailing days.

Rankins Springs launch site UpLift-19 The flight was commissioned by Clinton Toyota and we carried 3 cameras and 2 trackers and some science experiments. We used our Spot3 tracking for the commercial requirements and provided a secondary private payload where we added an APRS tracker and some experiments. The APRS tracker gives good data above the ground where the commercial stuff is pinpointed with the SPOT3 as it will give precise coordinates when it is one the ground. We use a simple one ring gimbal to ensure that the antenna always has a view of the sky and the satellites that it uses to communicate position. For the commercial aspects, that is all that is needed – to recover the payload and cameras. The APRS invariably stops communicating anything up to 1km from the ground, depending on how close it lands to a HAM radio APRS receiver. We launched from Rankins Springs, NSW – our main launch site. It gives a clear area over most of the flight with little water or little in the way of forests to get in the way. The tracking is good on APRS for all of the flight above 700m at launch. We test the radios are fully functional before letting go. I also realised after launch that my old call sign was on the balloon. That probably confused a lot of people. My fault, but I will rectify that for the next flight.

The winds were over 40kph and we could not see a way to launch until i spotted a solid line of tall trees on the other side of the sports oval. We repacked our equipment and set up in the light wind behind the trees. It worked, but that was with the wind from the north. Usually southerly winds are the problem, so we will watch carefully for weather conditions for future flights and I have a few sites around town picked out if we get caught again.

Rankins Springs launch site UpLift-19The local primary school (Rankins Springs) came out in force to hear us talk about what we were doing and a bit of fun and science. They came back for the release of the balloon. My son Jason wore his School uniform as he was representing the school for the science experiments that were being launched. He attends Sydney Secondary College, Balmain Campus.

We completed the payload frame, made from light wood (4 x 1.2m lengths) in the hotel room the night before release and it held together very well with no damage, despite a heavy landing due to the parachute getting rather twisted up and spiraling down.

IMG_3081This meant that we were not at the site where we thought it would land and we had about a half hour drive to reach the site once we realised the problem. In essence the balloon traveled east in the jet stream at speeds of up to 130kph and then broke into the stratosphere and stopped any horizontal movement. As it climbed into the stratophere it picked up speed and traveled to the west reaching 100kph at the point the balloon burst. That was an altitude of 33.333KM – 1/3 the way to space. As I said, this exactly matched our Croatian record where we had a 2.5Kg payload and a 3Kg balloon. The free fall saw a top speed, in the upper atmosphere where the air is thin, of 400kph. That was with a parachute and a rather non-streamlined pyramid frame. That was about 1/3 of the speed of the sound barrier at sea level. I can’t wait for future flights were we will build payloads designed to fly super fast in thin air. Watch out for our attempt to break the sound barrier with a small Radio Controlled aircraft. There will be a few records broken that day. Note in the picture (left) the bubble wrap used as an insulator for the batteries and trackers.

IMG_3073That is Jason holding the balloon during the fill. Notice the cotton gloves. We use these to protect the balloon or we use latex gloves, but they really make my hands too sweaty for my liking. We measured the balloons lift with a set of luggage scales – digital – and they have a “hold” button to make it easier to turn the hand held strain gauge over and see the reading.

This flight we used a new cutdown system that uses a UHF radio (1.4 watts) and a 10 channel modulation system. It should work up to 100km, but we are yet to test it at the extremes. The unit does work on all tests on the ground and this flight we did not have to terminate the balloon other than it bursting.

By the way, Clintons Toyota had a special “Clinton’s” jacket made to keep the chicken warm during the flight, but I doubt the toy mascot needed to worry about the cold. It probably experienced about -50 to -60C in the jet stream. That’s -58 to -76F for my US friends.

Bel;ow are some more photos of the flight. I hope that you appreciate the great leap in photographic quality and that you also appreciate the careful work that I have done to ensure that we recover each and every flight. It is always a challenge to keep our record at 100% recovery. Once we lose a payload, we can never again claim 100% success rate for all of our flights.

DCIM100GOPRO

Above: Jason and I give the payload a bit of close scrutiny before launch, caught by one of the payload cameras. Posing with the Space Chicken!

Rankins Springs launch site UpLift-19

Above: You can see the wheat and canola fields up here!!!

UpLift-19 Space Chicken

Above: Our Space Chicken at 33.333Km

Rankins Springs Free Fall UpLift-19

Above: Our Space Chicken in a 400kph free fall.

Rankins Springs Sunny UpLift-19

Above:  I hope I slip, slopped, slapped enough before the flight! The sun is bright up here.

Editor’s Note. We do not approve of the term “Space” Chicken from a scientific viewpoint as it is not space, but the company that contracted us to launch the balloon decided to use the term:
http://www.macarthuradvertiser.com.au/story/2562196/space-chook-takes-history-making-journey

Apollo Heritage – A GLXP Hangout

Apollo 11 45th Anniversary Hangout - Apollo Heritage and the GLXPApollo 11 45th Anniversary Hangout – Apollo Heritage and the GLXP.

Well the Apollo Heritage Hangout event is over and I had a lot of fun with the interview or should I say “armchair chat”. It was a very comfortable discussion. I am excited to tell you that there is a video of the event. It was recorded and the link is below. I must say that I am very taken with Dr. Pamela L. Gay (the host) and her interview style. I was never left with a feeling of “what will happen next”.

I was on the Apollo Heritage Hangout with Derick Webber, one of the GLXP judges and an easy to get along with type of guy who was also around during the Apollo era. He is also Director, SpacePort Associates. Author of “The Wright Stuff: the Century of Effort Behind your Ticket to Space” and much more.

So without any more chatter, click on the link below and settle in with a drink and enjoy the fun.

Please connect with out team – Team Stellar: http://teamstellar.org/

About Robert Brand:

Works for; and shareholder in a Communications and Aerospace company called PlusComms:

http://pluscomms.com/

Head of the Communications, Tracking and Data Division in Team Stellar.

Worked in Communications support for about 100 NASA and US military space mission and several ESA mission. Stationed at the Parkes Radio Telescope in comms support for the NASA Voyager flyby of Uranus and Neptune and ESA’s Giotto mission to Halleys Comet.

Robert regularly launches stratospheric balloons for both commercial work and scientific research. Some of the commercial flights are supporting space research for universities and private companies. The work is done through his company, PlusComms. He has launched 18 flights and recovered all 18 payloads. He will soon be building drones with supersonic capability (gravity assist).

 

Why Break the Sound Barrier with a Small Aircraft?

Supersonic Glider-spacecraftThe Sound Barrier is a Major Steppingstone

As I announced in my last post, Jason, my 12 year old son, will attempt to break the sound barrier. Above I mention that this is actually a steppingstone. “A steppingstone to what?” you may ask. The simple answer is “to build a spacecraft”. So why to we need to break the sound barrier? Well we want to test transonic flight. Not on the way up, but on the way down! ie slowing from supersonic speeds above the sound barrier (Mach 1 and higher) to subsonic speeds )below Mach1

Reentry

This is the hard part for any craft that I may build in the future. We can always buy a ride to space on one of the many well known rockets such as ESA’s Ariane rocket or SpaceX’s Falcon9. So what is the grand plan?

Personally, I see the future of any craft that I build (within an aerospace company) as being a reentry vehicle to return samples from space. This will mean transiting a number of challenging areas in its return to earth. Two of the critical areas are

  • the initial intersection with the atmosphere that will cause massive heating of the exposed portions of the craft – this often requires either:
    • an ablative shield – one that wears away as it heats, carrying the heat away
    • a strong insulator such as the tiles used on the space shuttle
  • crossing the sound barrier – that is the transonic area of flight. This is from Mach 1 to Mach 0.75 – the speed of sound down to 75% the speed of sound.

Hyabusa reentry sequencIf we were using a capsule like the Japanese Space Agency’s (JAXA) return capsule, Hyabusa, transonic regions would not be a problem, but I believe that the future for me is in building an aircraft-like reentry glider that will allow up to 20Kg of payload to safely transit to earth.

The picture to the right is  the landing sequence for JAXA’s Hyabusa that landed in the centre of Australia. It is not complicated, but you do have to know what you are doing and the downside is that it lands whether the winds take the parachute.

I want to fix that problem. I would love to be able to direct the returning spacecraft to a point on the map that allows us to land it without having to recover it from an unknown place in the desert.

Supersonic Aircraft SpikeThe picture at the top of page is somewhat like the expected end product. I expect that the spike will not be on the spacecraft, but it will be on the transonic test vehicle.

The picture at right is a test vehicle with a spike. There are many supersonic aircraft that either have a spike of a very sharp nose well ahead of the wings.

Returning from space the spike would be a liability in the heat of reentry. It will also not be an asset in slowing down a craft. We only need to have the spike to help lower the Resistance to breaking the sound barrier for our tests. In our tests we will use gravity to accelerate the test craft to way past the speed of sound, but shock waves (pressure waves) would slow us down and limit our top speed. We would probably still break the sound barrier dropping the craft from around 40km altitude, but the quicker we transit the sound barrier the higher our top speed.

So what does the spike do?

supersonic shockwaves in a windtunnelAs I said a sharp nose is the same as a spike and the image to the left shows the effect of the spike as it moves the shock wave to the point and away from the wings. A sharp point is a very low area of shock and in the image you can see the shock waves from the wings as very low level compared to the shock from the tiny front of the aircraft. So long as the wings are tucked in behind the initial shock wave than the resistance to flight is lowered.

Now I may have been a bit simplistic here, but none the less, the spike is important to supersonic flight. Since we are wanting to slow down, we can actually round the nose of the returning spacecraft after we conclude the test flights.

So Why Didn’t the Shuttle Need One?

WPointy nose and shockwaves at mach 6.ell it did need to slow down and so you might think that a blunt nose is a good thing, but that is not the reason. But wouldn’t a sharp nose be good for takeoff, spike or no spike? Well yes, but the shuttle had wings that were very wide and a spike could not be placed that far forward. The resulting shock waves on takeoff and especially re-entry would be a bit problem as they would hit the wings.

Re-entry would be the biggest problem. The shock wave from a pointy nose would hit the wings and further heat the air. You would be adding thousands of degrees to the heat that it is already being generated on the leading edge of the wing – not a good idea!

The image above right shows a pointy nose model in a mach 6 airstream. You can see the shock waves hitting the wings midway along their leading edge.

So What Happens with a Blunt Nose?

The image to the right says it all. The blunt nose acts as a ram and pushes the shock wave way to the side. This misses the wings by a long way. The blunt nose does add to drag so that is another benefit, but a minor one.

What Else Protected the Shuttle from Shock?

Ever consider the orange main fuel tank? Where was the shuttle positioned relative to its nose. It had a point, but was really broad.

What effect did that have during launch at high speeds. The shock wave that resulted missed the shuttle entirely. It is important that the top of this tank was far enough forward to protect the shuttle. The whole design and shape of the combined modules on the launch vehicle was super critical and not just a random bunch of sizes. Minimizing shock waves means being able to both protect the vehicle and increase the payload as you have less drag.

In other words, if the main tank had needed less fuel and had been smaller, then it would still have needed to be as high to push the shock waves aside.

Each and every part of an aircraft that changes its size or sticks out causes shock. You must account for it or suffer the consequences.

The image at right clearly shows the  shock wave of the jet disturbing the water. You do not have to be traveling at supersonic speeds to produce shock waves, but the faster you go, the more power is lost and the stronger the shock wave.

UpLift-2

Australian Student (12) to Attempt Breaking the Sound Barrier with Radio Controlled Aircraft

UpLift-2Jason Brand to Attempt Breaking the Sound Barrier with Model Aircraft.

In the next 12 months, Jason Brand will attempt to break the sound barrier. He is a 12 year old student from Sydney Secondary College, Balmain Campus and is a regular kid with a passion for aerospace. Not surprising as his father, Robert Brand, is one of Australia’s leading space entrepreneurs.

The event will be a huge media attraction as nothing like this has been attempted before, especially by a 12 year old Student. It will consist of a zero pressure balloon ride by the aircraft to nearly 40Km altitude. The aircraft will be released and immediately be placed into a vertical dive as Jason pilots the vehicle by remote control. He will be wearing goggles that will allow him to see the view from the cockpit and all the important instrumentation. This Point Of View (POV) feed and possibly a HD feed will be available for a live feed for the media during the event. HD TV images will be recorded in memory aboard the aircraft.

pressure wavesJason has been studying supersonic wind flow over the control surfaces and the the loss of laminar flow away from control surfaces. Add to this the drag of shock waves. He and his father have come up with a design that has minimal laminar flow issues and low drag to ensure that Jason can maintain control as the aircraft exceeds the sound barrier by as much as possible. He has also been studying Mcr and Mdr and P and a whole lot of other important factors . Look them up! Yes the flight will be similar to the original sound barrier flights by pilots such as Chuck Yeager.

The flight will involve shifting the centre of gravity during the super sonic and sub sonic flight stages and retracting the supersonic spike during normal flight. The craft will be using an ITAR controlled GPS system that is capable of operating at well over the speed of sound. Video feeds will be available for the press in real time and HD video will be stored on the aircraft in memory as will be the GPS sampling.

UpLift-1 Launch with Jason BrandJason’s interest in “what’s up there” dates back to 2009 when he was 9 years old. His father decided to launch a weather balloon to the stratosphere and recover the payload and the camera. It was a great success. They launched the first balloon from the sleepy town of Rankin Springs in central NSW. They chased the balloon with radio tracking and the flight progress, with Google terrain was broadcast on the Internet during the flight. The jet stream was slow that day and they were sitting in the shade having lunch when the balloon burst at 24Km and the payload started its decent. After a few lessons in getting to the right field through a maze of gates and fences, they recovered their first payload. Today, Jason, along with his father are veterans of 18 flights and 18 recoveries. a 100% record and they intend keeping that way through science. The picture above is Jason picking up a video camera from a payload while the still camera just happened to snap his picture. After the first balloon flight he got his Foundation Amateur Radio Operators License (HAM) by doing a course at the Waverley Amateur Radio Club. He is now passionate about radio systems in regards to assisting with his goals in Aerospace.

IMG_1883His love balloon flights and model aircraft has grown. He recently designed and built a 1.5 horsepower tricopter which can lift 2Kg of load. He has also traveled to Croatia at the invitation of Team Stellar. Jason is the Australian Student Representative for Team Stellar – a Team in the Google Lunar X-Prize. He and his father (Head of Communications, Tracking and Data for Team Stellar) were invited to Croatia to launch Student payloads into the stratosphere – a difficult task in such a small country where the need to keep the balloon and payload within the borders is paramount. Add to that the large amount of forested land, swamps and mountains; not to mention the massive problem of leftover land mines from the recent wars with bordering countries. The flights were using the largest balloons and achieved a height of over 30Kms, one reaching 33.33km – one third of the way to space.

Jason spoke in front of many scientists, teachers  and engineers over recent years including Teachers at Science Week in Albury, Engineers Australia and the Skeptics group in Croatia. He has appeared on TV in Croatia and Australia. Below is a recent interview of a major balloon event in Croatia where Jason was a key person in the project.

The attempt will cost $60,000 and he is seeking sponsorship. One Sydney University has offered assistance and resources such as wind tunnel testing. The attempt will be with CASA approval and may be required to be located away from most air traffic in remote areas of Australia.

If you are interested in sponsoring the event please contact via homepc@rbrand.com

Media Contact: Robert Brand (International) +61 448 881 101   (national) 0448 881 101

Andy’s Pico Flight Progress

Balloon Headed North

Andy’s Pico Flight progress has been as predicted. It is heading very much north from Melbourne in an unusual jet stream current. It is averaging about 8,000m (8Km – 5 miles) altitude and headed north at an average speed of 80kph (50mph). It recently passed over where Jason and I launch our balloons. It was a little west of Rankin Springs!

With a little luck, the current winds will take the balloon to sea near Cairns in far north Queensland (Australia). Below is the current track at time of publication:

Andy flight

Below is a snapshot of the jet stream that has allowed the flight to head north rather than the regular west to east path:

Jet Stream 2014-06-09

See the wind markers pointing straight up from Melbourne in the SE of Australia? Below is a more normal flow in 3 days time. The wind is headed west to east:

Jet Stream 2014-06-12

Andy has been very careful to watch the forecast and launch for the unusual jet stream wind direction.

Note that HAM radio tracking is listed in the preceding post. Tracking sites on the Internet are listed.

Australia to New Zealand Balloon Success

Andy New ZealandTrans Tasman Balloon Success

Congratulations to Andy, VK3YT in getting his Pico Balloon from Melbourne Australia to New Zealand. The balloon crossed land in New Zealand at 1600 UTC (GMT)  17th March 2014.

The flight last tracked offshore from Sydney more than a day ago and the tiny balloon has been transmitting its signal over the ocean until it changed frequencies at 160 degrees longitude to the New Zealand APRS tracking system.

NZ Amateur radio station Zl2AJ-5 was the first to hear the tiny 10mW transmitter as it neared the coast. The balloon will likely pass over the country within an hour and sone after the transmitter will fail with the battery losing power.
————————————————

A long range PICO balloon flight is under way. Predicted path is Melbourne – Sydney – NZ

Payload is an ultra-light APRS beacon transmitting 10mW on 144.575Mhz.

Callsign is VK3YT-11

APRS tracking at
http://aprs.fi/#!call=a%2FVK3YT-11&timerange=86400&tail=86400

Tracking with prediction at
http://spacenear.us/tracker/?filter=VK3YT-11

Updates will be posted at http://picospace.net

Andy NZ

 

Record Balloon (HAB) Attempt

OLYMPUS DIGITAL CAMERAAustralian or International Record High Altitude Balloon (HAB) Attempt?

It seems that some HAB friends along with my son Jason and I are going to attempt a Balloon (HAB) record. It may be an Australian record or an International record. The only question remaining is how we will do the attempt. It is a serious question and looks like it will be either a self funded exercise or one of good timing. As many of you know, Jason and I assist with commercial launches through my company, PlusComms. Several customers in the very near future will be  making flights using zero pressure balloons. These are amazing balloons that do not burst like weather balloons. They simply are huge envelopes that expand to their maximum size and any excess gas vents from the bottom of the envelope. They often look under-filled when the are launched and then as they ascend and the gases expand, the balloon fills to capacity. Right: is a small Zero Pressure Balloon from Raven Industries in the US. Alternately we can use a 3kg weather balloon. The record may be altitude, distance or both.

So we have 2 options:

  • A 3Kg weather balloon
  • Hitching a ride on a Zero Pressure balloon

3Kg Weather Balloon.

UpLift-1 ready to launch with help from the locals at Rankins SpringsThese are the domain of amateur balloon enthusiasts. Smaller balloons are affordable as are parachutes and trackers. By the time you travel to a good launch site, the exercise may cost US$500. These balloons are like standard party balloons. They are sealed envelopes and they expand until they explode. That is UpLift-1; our first flight: pictured on the right. 3Kg is the weight of the balloon alone. UpLift-1 carried a 500 gram payload (1 pound) and the balloon and parachute cost me US$75

By under-filling a 3kg balloon for a slow rise and making the payload a simple tracker, we would expect over 40km altitude. By using Hydrogen, we would get a lot higher. The cost of the balloon alone with shipping is over US$500. Our attempt would cost close to US$900 when we factor petrol, balloon gas and accommodation. Possible maximum altitude would be close to 45km or nearly half the way to space (100km by most definitions). At some stage the balloon would explode and the flight would terminate. We would not recover the tracker unless it fell into a very accessible place. It would either explode or float without exploding. Either way the balloon would soon explode within 24 to 48 hours as the strong UV destroys the Latex material.

I buy my balloons from a UK seller:

Balloon Sales: http://randomengineering.co.uk/Random_Aerospace/Balloons.html

Zero Pressure Balloon

This is a serious high altitude balloon. A small one weighs nearly 20kg (41 pounds) and will reach 135,000 feet / 41km with a 7kg payload. One is pictured top right. What we are planning (if we get permission from one of the customers) is to cut away the paying payload and continue the flight with a smaller amateur payload designed to do two things:

  • Rise further without a payload to over 45km
  • Stay aloft for many days or weeks traveling around the world

2014-02-08--01-11-07-PSPI-8C9The secondary payload would have a communications package with a satellite modem to get back reports on the half hour and as requested. It will also be able to terminate the balloon envelope by command if required. During the night time, the balloon descends as the air cools. If the gas levels are low (leakage over time) it may descend into controlled airspace and it will need to be terminated. We will use solar power and rechargeable batteries and it will engage with local HAM radio operators with UHF RTTY capability and a frequency agile APRS transmitter. This is because there are different frequencies used for APRS in different countries. We may also have slow scan images from the balloon sent via RTTY packets. The images are broken up into 60 to 70 packets and sent with sequential RTTY transmissions. If sent back to the server, these are assembled back into an image. Any missing packets are left as grey or coloured bands. That is the example on the right with two missing packets. This was from a recent HAB flight conducted by my good friend Andy from Melbourne. Jason and I helped with both the launch and recovery.

With hydrogen, we may approach or exceed the 50kg mark and may exceed the maximum altitude of any object in the world other than rockets passing through the atmosphere.  The world record for HAB flights is 53km. We are now designing and building the equipment for flight. We are looking forward to flying with one or both of these missions.

As the customers may have unusual schedules or issues with secondary payloads, we may need to raise some funding through Kickstarter or similar to make this a reality. Minimum funding needed is US$15K.

 

 

Jet Stream Snapshot

Australian Jet StreamFind out what the Jet Stream is Doing.

If you are launching a High Altitude Balloon (HAB), it will be in the Jet Stream for a significant time during its flight. You had better know what the jet stream is doing. Predictions are good, but reality is the key. I have found a site that is perfect for this and the method of display is excellent.

Thanks to HAB enthusiast, Andy from Melbourne, for the link. In fact he launched a pico balloon flight (uses a foil balloon) that never got higher than 7,000m because he saw that the jet stream was running north from Melbourne. Before its transmitter battery failed or it ran out of range of the last tracking station it was nearing Bourke in NSW. Not bad for a foil balloon. That is nearly 1,000 kms. Below is a link to the Australian map for the jet stream.

The website is: http://weather.wvec.com/auto/wvec/global/Region/AU/2xJetStream.html

Below is the track of Andy’s Pico Balloon flight. There is a small chance that the battery is not flat and it may get picked up by a remote APRS station – HAM radio tracking station. If it gets seen again, we will let you know.

Andy Pico flight 20140217

You can clearly see from the Jet Stream map, that the flight was easily predicted visually.

Other countries will also have their Jet Stream maps – maybe on aviation websites. Search and you may be rewarded with a real tool. You will find many here:

Australia: http://weather.wvec.com/auto/wvec/global/Region/AU/2xJetStream.html

US: http://weather.wvec.com/auto/wvec/global/Region/US/2xJetStream.html

Europe: http://weather.wvec.com/auto/wvec/global/Region/EU/2xJetStream.html

Central America: http://weather.wvec.com/auto/wvec/global/Region/CA/2xJetStream.html

Southern America: http://weather.wvec.com/auto/wvec/global/Region/SA/2xJetStream.html

Asia: http://weather.wvec.com/auto/wvec/global/Region/AS/2xJetStream.html

Jason Delivers 18 Lectures in 3 Days

UpLift-16 AlburyScience Week at Albury, Australia 2013

I was delighted when the organisers of the Border Stargaze and Science Fair invited Jason and myself to deliver 18 x 30 minute talks over three days to both public school students and high school students. I threw Jason in the Deep end and told him, it was his job to deliver the talks. We were also asked to fly a small balloon with just a tracking payload. It was designated sequentially in our UpLift series as UpLift-16. We were not planning on recovering the tracker, but with our record of recovery, it seems that we were destined to even get this one returned to us. That was mentioned in an earlier post. See: Australians Applying to CASA for a HAB Flight More on that later.

Here is a bit about the event:

Border Stargaze and Science Fair

The event is open to all ages, the wider community, schools and amateur astronomers. The Border Stargaze has grown over the past 7 years and with it the annual Science Fair. It is event such as these that have inspired individuals, groups, schools, the community and universities in our region.

When: Monday, August 12 2013 till Sunday, September 8 2013. 9:00 AM to 12:00 PM
Where: Albury, NSW, 2640
What: Festival, Hands-on activity, Talk / Lecture
Theme: Energy and transport, Environment and nature, Health and medical, Space and astronomy, Innovation and technology
We drove down from Sydney – a solid 6 hour drive and of course we had to drive back after the event. They had offered to fly us there, but the amount of gear we needed even for the simplest balloon flight and props for the lectures was too much to fly to Albury. Jason Delivered 18 Lectures in 3 Days.
We left after School on Monday afternoon and got to Albury late Monday ready for the lectures the next morning. It was a great event and after a few talks with me assisting, Jason (11)  found his stride and he was delivering the talks like he had been doing them all his life. The subject was launching and recovering stratospheric balloons. We passed around the tools of the trade we use to get a high altitude balloon into the stratosphere. Balloons, parachutes, even the thin cord used to suspend the payload from the balloon and of course the GPS tracker.
On Thursday morning we got up before dawn on a very cold winters morning and headed out to the designated launch site. Although it was the required 5km from the airport we had to liaise with Albury airport because we were in the landing circuit. We had to release our balloon between landings. We were able to give the airport our tracking web page and they were able to monitor our balloons flight, ensuring adequate safety for those in the air. We successfully launched our small balloon and tracker – no parachute as it would fall slowly with its super-light weight bubble wrap cover. We only used the bubble wrap to insulate from the extreme cold of the jet stream. The winds would take the payload to the east and over inaccessible land. We did not expect to see the tracker again, but we did thanks to the host of Canberra Fuzzy Logic Science Show, Rod Taylor. We still have a 100% recovery record after 16 balloon flights. Rod’s trip to recover the payload will be in another post.

Jason and I have HAM radio licenses and we use a HAM radio compliant tracker for these flights. We are amateur radio operators, (nick named HAMs). Jason got his foundation license at age 9 because he wanted to help with the radio systems that we use to communicate. His license is not high enough to use the APRS (digital) systems, but I have a “full” license that allows me to use the systems. My call-sign is VK2URB and Jason’s is VK2FJAB. You can look up your local club on the Wireless Institute or Australia’s website and select “Radio Clubs” on their menu.

. Contact you local club for more information..
UpLift-16 Albury - before sunrise - it was cold
UpLift-16 Albury – before sunrise – it was cold
.
UpLift-16 Albury - Preparations
UpLift-16 Albury – Preparations
.
IMG_0076
UpLift-16 Albury – Preparations
.
 UpLift-16 Albury - Preparation of the HAM Radio APRS Tracker
UpLift-16 Albury – Preparation of the HAM Radio APRS Tracker
.
UpLift-16 Albury - Preparation of the HAM Radio APRS Tracker
UpLift-16 Albury – Preparation of the HAM Radio APRS Tracker
.
Jason in Class with the balloon being tracked across country
Jason in class delivering a lecture with the balloon being tracked across country.
.
  UpLift-16 Flight 01
UpLift-16 Flight over the lakes near Albury – Lake Hume on the right.
.
UpLift-16 passing overt the old Honeysuckle Creek Dish Site.
 UpLift-16 passing overt the old Honeysuckle Creek Dish Site.
Note the harsh mountain forests and difficult terrain.
Honeysuckle Creek Tracking Station brought the world
Neil Armstrong’s first steps on the moon  – Apollo 11

.

UpLift-16 breaks our personal best altitude record.
UpLift-16 breaks our personal best altitude record.
.
Jason Brand and Dr Barry Jones - past Science MinisterThe flight made it to well over 30km altitude and set down in a field near the Monaro Highway as the small village of Michelago. It was too easy to recover after avoiding so many impossible places. The classes that watched the tracking in class cheered every time we set a new record. Jason was also given the privilege of representing his school in Sydney and wore his school uniform – Leichhardt Public School (Y6)
Jason with Dr Barry Jones – Past Minister for Science and quiz show contestant extraordinaire. Now in his eighties, he is still a huge supporter of science and was a key note speaker at the Albury National Science Week event where Jason was a guess presenter. Jason was excited when Dr Jones mentioned that he had heard of Jason’s balloon flight that landed south of Canberra in the ACT. He said that it was lucky to land south as all the hot air would have kept it from landing in Canberra (full of politicians). — at Charles Sturt University.
Our return drive to Sydney on Thursday night was uneventful and Jason was back at school the next day. He did have to give the same talk to his Y6 students at his school.

UpLift-1 in the Sydney Morning Herald (Archives)

Sydney’s very own space agency: Brand and son

*** Recovered from the Archives ***

This excerpt from the Sydney Morning Herald, January 16, 2012. UpLift-1 in the Sydney Morning Herald

Sydney’s Space Agency

Sydney space enthusiast Robert Brand, with the help of local school students has built and launched a weather balloon a quarter of the way to space.

Sydney space enthusiast Robert Brand and his 9-year-old son Jason recently launched a high-tech weather balloon a quarter of the way to space, retrieving images and flight data to help school children get a better understanding about space.

Mr Brand, of Dulwich Hill, has a history with space – at age 17 he wired up some of the Apollo 11 communications gear in Sydney during his term break from college. He was also stationed at the CSIRO Parkes Observatory in New South Wales at the request of the European Space Agency for spacecraft Giotto’s encounter with Halley’s comet in 1986 and Voyager’s encounter with Uranus and Neptune in 1986 and ’89. Also under his belt is an award from NASA for support of STS-1, the first orbital flight of the Space Shuttle program, presented personally by the commander and moon walker John Young.

So when it came time for Mr Brand to launch his own gear towards space he was well prepared, documenting his do-it-yourself journey on his personal blog wotzup.com for other space enthusiasts to watch and track.

Jason and his father Robert celebrate retrieving their weather balloon, which captured data and images on a mission a quarter of the way to space.

Jason and his father Robert celebrate with ginger beer (soda/soft drink) after retrieving their weather balloon, which captured data and images on a mission a quarter of the way to space. Photo: Supplied

“[The balloon launch] was being done to help science education in the Sydney area and anywhere else in fact because we were publishing [on the internet] all of the information and data that we got from the balloon launch,” said Mr Brand, 59.

Launch day was December 28, 2011 from Rankins Springs near Goolgowi in Central NSW. As the balloon got up to about 85,000 feet (25.9 kilometres) above Earth before it burst, Mr Brand and his son tracked it using amateur radio.

“During the flight we were actually relaying data back to the ground and off to a server and that allowed people from all over the world to actually participate with this flight and track it as it was going,” Mr Brand said. “We were getting back a lot of comments on some of the social media [services] such as Facebook just really helping us understand what they were sort of getting out of the whole project. People were sort of yelling loudly if you could put it that way, on the [wotzup] website claiming ‘Hey, they’ve reached this height and that height’, and so there was a lot of really great audience participation in this.”

Robert and his son pump the weather balloon with helium before launch.

Robert and his son pump the weather balloon with helium before launch. Photo: Supplied

The data being sent back from the balloon – which was later recovered about 50 kilometres away from where it was launched – tracked altitude, position, rate of climb, payload temperature, payload voltage and air pressure, Mr Brand said. The balloon also has a camera on board that captured still images. “We could actually see as [the balloon] hit different wind levels in the atmosphere and eventually we got up into a jet stream and actually found that we had two jet streams,” Mr Brand added.

When the balloon finally popped it came hurtling back towards Earth at about 40 metres per second, according to flight data.

“So this thing was falling a bit like a brick would fall at ground level but it slowed down and eventually the parachute dropped it on the ground at about six metres per second,” Mr Brand said.


The view from 10,666 metres, the height at which commerical jets will normally fly at.

Photos from Robert and Jason Brand’s weather balloon flight

The view from 10,666 metres, the height at which commercial jets will normally fly at. Photo: Robert and Jason Brand

  • The view from 10,666 metres, the height at which commerical jets will normally fly at.
  • The view from 21,977 metres.
  • The view from 22,222 metres.
  • The view from 22,470 metres.
  • The view from 22,969 metres.
  • The view from 24,305 metres.
  • The view from 26181 metres.
  • The view from 300 metres.
  • The view from 3235 metres
  • The view from 4153 metres.

The balloon (payload) was put together with the help of senior students at Sydney Secondary College at Blackwattle Bay, who Brand sought to get involved with the project and tasked them with doing a whole stack of materials testing. They tested the Styrofoam and how it reacted in zero atmosphere as well as the glue, ensuring it would hold throughout the flight. “The students were putting these materials in a bell jar and sucking the air out of it . . . and checking all of the materials held together – and to protect some of the electronics from the very cold temperatures of about minus 50 Celsius we simply used bubble wrap. … You’d be surprised to know that bubble wrap doesn’t explode when it gets into pretty much zero atmosphere.”

What's in the box? Jason shows the weather balloon's payload.

The photos that came back from maximum altitude look “pretty much like that taken from a space shuttle”, Mr Brand said.

“So very dark skies looking at this very thin blue line around the Earth which is our atmosphere and protective layer. It’s a bit scary when you see that photo and realise how thin the Earth’s atmosphere really is.”

Picture right: What’s in the box? Jason shows the weather balloon’s payload. Photo: Supplied

When it came time to recover the balloon it was tracked to landing on a field near the small town of Weethalle in NSW, Mr Brand said. “There was nothing growing on it. It seemed to have been abandoned.”

After knocking on a farm door to no avail, he and his son entered the field to locate the balloon. After driving “pretty much right on top of it” it was recovered, allowing for the father and son duo to publish the photos it captured that weren’t sent back live but stored on the camera attached to the balloon.

Mr Brand hopes to do more balloon launches and get schools involved.

“I’ll keep doing this each year and trying to get . . . more interest in the school year earlier in the year. I’m very keen to hear from people that might be interested in getting involved.”

End of article: UpLift-1 in the Sydney Morning Herald

13th Australian Space Science Conference Pt2

13th ASSC Uni NSWTriple Play in the Space Sector

by Robert Brand

As I mentioned in the last post, I was fortunate to present at the 13th Australian Space Science Conference at Sydney University a little over a week ago. The only unfortunate thing was a mix-up by yours truly and I ended up there on the wrong day. I was meant to be delivering a talk on “Triple Play in the Space Sector” and poor Alice Gorman, who was hosting the panel, was asking if I had turned up. My biggest apologies ever Alice!

I did however get a chance to present in the education stream and I am including this presentation here. My son Jason came along to help me as it was school holidays. Luckily every talk was about some of the work that he does with me, so it was pretty interesting most of the time.

Below is the PDF version of my PowerPoint presentation. It is interesting to note that we are doing so much that I can easily put together a complete presentation during a few other people’s talks. As you can see I gave my WotzUp website a plug!

You can download it here: Click to Download

Download (PDF, 1.4MB)

Collins Armstrong and Aldrin pass by waving

Apollo 11 visits Sydney

Collins Armstrong and Aldrin pass by wavingMy photos of the Apollo 11 Crew.

Nov 1st, 1969

by Robert Brand

If you read my post about my involvement in Apollo 11 communications in Sydney, then you’d know that I could not miss the opportunity to see the crew of Apollo 11 in the flesh.

The crew toured Sydney on November 1st 1969 – just 3.5 months after their flight. The streets of Sydney were crowded and all I had in my camera was black and white film.

The site of my pictures is close to St James train station in the heart of Sydney. They cruised up up Kings Street from the west with security and a police escort.

I was very proud to have been a small cog in the massive gears of the Apollo mission. I was still 17 years old and just a kid that could not even vote, but it was an amazing experience. Below are my photos on Facebook and a copy of one of the newspapers.

 

“I was 17 and although I wired up a lot of Apollo comms gear at OTC Paddington in Sydney, I had to take my place on a Sydney street to snap a few seconds on the Apollo Astronauts driving by.”

From Apollo 11 tour Sydney Nov 1 1969. Posted by Robert Brand on 12/21/2011 (8 items)

Generated by Facebook Photo Fetcher 2


Robert Band at Spacefest IV 2012 (Archives)

Australia’s Space History at Spacefest IV

by Robert Brand.

As many of you know that I have recently moved into the Space sector, but I am not talking about just comms. I am talking about designing and engineering a space mission.

Because of this I was asked to speak at Spacefest IV. It was held at Tucson Arizona in the US. My talk was on a bit of the past and the future. In fact it was this talk detailing my experiments at 20-30km that got me the space mission job.

After 18 hours from waking to arriving at Las Angeles with no sleep, I drove the 10 hours to Tucson.Quite a trip and I did try to sleep and rest along the way, but managed to get there safely. It was an amazing resort (J. W. Marriott Starr Pass Resort) with a facilities you can only dream about like the massive circulation pool and water slide. This picture was taken close to my room.

I was in interesting territory. This all started just over 3 years ago when I was contacted to do an amateur radio moon bounce event to celebrate the Apollo 11 40th anniversary. Since then things have grown and I was drawn into amateur rocketry and amateur satellites. My balloon experiments at 20km and 30km got noticed as did my current attempt at purchasing the  Jamesburg Earth Station. I ended up on the speakers’ list at Spacefest IV and I was amongst some formidable speakers. I was amongst Apollo astronauts and moon-walkers, mission controllers and planetary geologists. I certainly had to given them their money’s worth (they were paying). Until my talk I was enjoying the visual feast of the area and the people. There were about 18 astronauts and mostly Apollo astronauts.

All the astronauts are pictured here – That’s Al Worden with his shoes off. He was getting annoyed at the long time it took to shoot the photos and got a little fidgety:

Above: There is a crew member from every manned Apollo flight represented in this photo. Apollo 7: Cunningham, Apollo 8: Gordon, Apollo 9: Scott, Apollo 10: Cernan, Apollo 11: Aldrin, Apollo 12: Bean, Apollo 13: Haise, Apollo 14: Mitchell, Apollo 15: Scott & Worden, Apollo 16: Duke, Apollo 17: Cernan, Skylab 2: Weitz, Skylab 3: Bean & Lousma, Skylab 4: Gibson, ASTP: Brand.

I even got to meet the elusive Buzz Above: Aldrin, but he does not let his guard down easily and unless you are signing a $400 autograph it is hard to speak with him..

My talk went over very well. I told the story of Carnavon, Paddington and Moree’s contribution to Apollo 11 and other missions such as ESA’s Giotto probe to Halleys Comet. It was a fantastic opportunity to remind the US that they did not do this all by themselves. Well they pretty much did, but I certainly reminded them that Australia was important in the actual mission as the earth turned!

Above: Even my namesake Vance Brand, command pilot of the Apollo Soyuz mission was on hand and we got along famously just because I had the same name as his brother! That is us below:

The talk covered the Paddington site, manned by NASA staff:

Above: In the lead up to talking about NASA and OTC’s Carnarvon site I mentioned this story that I published here a few months ago – in fact it is a cut and past from the exOTC website:

 

Above: I went on to talk about the current high altitude experiments and the future of Do-It-Yourself Space – experiments that I am doing with my 10 year old son Jason who has his amateur radio license

 

I am looking forward to next year’s Spacefest where I expect to be in late May 2013. Here is a video of a few parts of my talk. The photographer accidentally interprets the bit about  the Giotto mission as tracking rogue asteroids, but he only filmed fragments and put some words together. Thanks to my good friend John Sullivan for the video.

High Altitude Balloon Experiments

Here is a picture taken at 26km from a recent weather balloon flight from Rankin Springs in central NSW:

You can click and click again to enlarge the image. Use the “Back” button to return here.

Below is a little image to show how amazing the results are even at 26 km. my photos are unaltered and taken from the above image:

The Sydney Morning Herald did a story on one of the flights. Here is the video:

http://www.smh.com.au/technology/sci-tech/sydneys-very-own-space-agency-brand-and-son-20120116-1q26j.html

After Spacefest I traveled to Jamesburg and I have already written about that in an earlier post.

 

 

A Visit to Honeysuckle Creek

hsk_1971_tnMy Return to Honeysuckle Creek

It had been 42 years since I visited Honeysuckle Creek. I was still a teenager at the time – 19 years old. I had just been working on comms for Apollo missions and had completed a lot of work wiring up comms for Apollo 11 gear at OTC Paddington. I had been on a pilgrimage to know ground zero zero for the reception of Neil Armstrong’s first steps on the moon – Honeysuckle Creek. Many may have been mislead by the movie “The Dish” that indicated that Parkes had been the site that brought us those first steps. It was Honeysuckle Creek. Parkes did bring us the majority of the moonwalk, just not Armstrong’s first steps. The dish was about 30m and now resides at the NASA Deep Space Centre in Tidbinbilla near Canberra.

I had come to Canberra with my son Jason who had just turned 11. It was a massive space weekend. We came down for the 40th anniversary of NASA’s 70m dish at Tidbinbilla. We visited Mt Stromlo, Had dinner with the Honeysuckle Creek staff and wives, we were live on Canberra’s Fuzzy Logic science show with Robert Brand, Jennie and Len Limpus at Honeysuckle Creek in 1971Rod Taylor (2XX) for a whole hour and then we went to visit the Honeysuckle Creek site. Only foundations and storyboards are left at the site, but we had our own tour guides and what guides they were! Some of the original staff that brought those moon pictures back to earth. This picture (above) is of a young Colin Mackellar who has created a fabulous history of the Honeysuckle Creek site and even the role that my government department (I worked for OTC(A)) played in the the Apollo missions.

I too have a photo from my visit in 1971. I went there with some friends and my new bright red Toyota Corolla. Honeysuckle Creek was out on Apollo Road in the mountains south west of Canberra and south of Tharwa.

Our trip to the site was very pleasant and easy to drive since the entire road was sealed when the NASA site was established in the 60s. It is a campground now and an absolutely beautiful place to visit. The open areas are still grass. John Saxon (Honeysuckle Creek staff) and Hamish Lindsay (Honeysuckle Creek staff) gave us a really great tour of the site, explaining the operations and what the staff had to do. Jason loved rubbing shoulders with those history makers and enjoyed the drive, tour and the entire weekend.

John Saxon and Hamish Lindsay ex Honeysuckle Creek staff

John Saxon and Hamish Lindsay – ex Honeysuckle Creek staff

To visit the Honeysuckle Creek site website: CLICK HERE

Below are some photos from our visit.


“This was the site of the dish that brought the world Neil Armstrong’s first steps on the Moon..”

From Honeysuckle Creek ACT. Moon Central. Posted by Robert Brand on 4/15/2013 (12 items)

Generated by Facebook Photo Fetcher 2