Space Tools – Reaction Wheel Fun

Reaction Wheels are Great Fun

How do you keep a spacecraft large or small stable in space? Reaction Wheels are one way. Writing software to control one reaction wheel of four is tough, but this toy/tool lets you test them. at least if they are small.

A reaction wheel Test platform

I love playing with this beast. it is to simulate the operation of reaction wheels that are used to stabilise small spacecraft. I was at Sydney Uni discussing our StratoDrone and how to build a test flight involving a zero pressure balloon. More on that later, but we now have a plan. This reaction wheel test jig is hugely expensive and it sits on a partial ball that then sits on a vertical stand in a half hemispherical hollow fed by air. Basically it floats on air and the reaction wheel results are clearly seen. You can test your electronics and your programming. Although these are bigger than those used for a cubesat, they still work the same and produce this visual action. It of course does not go around fully as in space. It hits limits in the ability to roll and pitch, but the actions can be seen clearly. I love this tool so much.

You can also see that the various axis are written on the perspex above the reaction wheels. There are only three needed in a basic unit, but 4 are often provided in case one fails. It is placed at such and angle that it influences all three axis. If one fails, then the 4th replaces it and the working two have to counteract the influence it has on them. It means it also has to spin 3 times more to achieve the same result in replacing the faulty unit.

There are other platforms and ways to test reaction wheels. even hanging a test object on a long cord from the ceiling will give a good indication of what is happening at almost zero cost, but this tool is way more elegant and will give a more accurate result.

I love space toys! – erh – I mean space tools.

When to use a Reaction Wheel

The ISS uses Gyros and not reaction wheels. They are not the same, but I will not go into that in detail here, but I will say that Gyros don’t always work. They reach a stage where they get saturated and require a sort of reset and thrusters are needed to get things stable again.

A control moment gyroscope (CMG) is an attitude control device generally used in spacecraft attitude control systems. A CMG consists of a spinning rotor and one or more motorized gimbals that tilt the rotor’s angular momentum. They are big and heavy. They are used on board the ISS and spin constantly. No manned craft or craft visiting the ISS has ever used gyros. A gyro can exert torque along any axis by turning the gimbals. It is also very big and heavy. The whole assembly is roughly spherical in shape.

As for reaction wheels, once the reaction wheel reaches its maximum angular velocity, it must be slowed down and the resulting torque must be counteracted with thrusters. Usually there always are some reaction control thrusters and if precise attitude control is needed, there are reaction wheels in addition to thrusters. The reaction wheels maintain precise stability until they reach their limits. They are however very useful for cubesats. Cubesats may also be further stabilised along the earth’s magnetic field by the use of a powerful magnet on board the spacecraft. care must be taken in the design for the reaction wheels not to fight the magnetic orientation.

Spaceport Darwin Low Risk Business Model

Point Stephens NT General AreaA Staged Business Model

by Robert Brand. To be clear, I will not go into the long term business details, profit and loss figures in a public forum and I will not be exposing any business plans other than a general outline, but the nature of why it is a low risk for the Northern Territory government and my company will be clear. There is almost nothing needed other than to reserve this land until developers wish to fund the development of private launch pads.

I proposed a site for Spaceport Darwin in yesterday’s post and by today there were several people that liked the site, but needed a business model to fully accept that this could happen. I understand that desire to see everything so this morning I am posting the basis of the business model. I was going to wait a week to be able to report more, but to get some credibility, here it is.

Spaceport Darwin will be a staged approach that would see investment grow over time and facilities established as needed. The failure of the past is that massive investment was needed on day one. Another factor is that we can establish credibility over time for the site and with those wanting i invest in launch facilities. With almost zero cost, agreements can be put in place for the first part of the operation and sounding rocket launches can take place before the main area sees a shovel of dirt moved.

Why does our Business Need a Spaceport?

Simply because in two years we expect to test fire our booster / sounding rocket to space. I have worked with CASA and with other groups that would have plenty of objections to where I can launch from. There are also few places to launch to orbit. Insurance companies prefer a water launch and costs are lower if you can lower the risk. Since our long term goals are orbital space, it makes sense to look to a long term site to save money. My company also has an interest in being involved in the running of a spaceport. My background is founded in the civil aviation sector and my education was focused on Civil Aviation electronics and systems. I have also a flying background and interact with CASA on balloon flights to the stratosphere. In our company (being set-up now) I am currently heading a group to build spacecraft and rocket technology. All small points, but with the right people, it makes me ideal to kick start such a business. We also need an area away from major air traffic to launch heavy payloads to the Stratosphere. As a Spaceport is not in constant use, this makes Spaceport Darwin ideal as a launch point for 2-3 ton payloads for stratospheric space observation. With a 2 year start date on a couple of these items, now is the time for me to secure a site for a Spaceport and negotiate an outcome.

Potential Spaceport Services

Apart from fuel storage, gas storage, water, power, staff and other background essentials, I am talking about the end product/ services. The first three below my company requires in two years:

  • Sounding rocket – non orbital – straight up and down
  • Sounding rocket – launched to the east. Payload landing 190km away
  • 2-3 ton payloads sent by balloon to the stratosphere.
  • light to heavy rocket launch facilities – increasing over time
  • 5km runway for landing winged space vehicles
  • Up to 4 launch pads – as demand requires. We are seeing the establishment of private pads in the US at the Kennedy Space Centre
  • Equatorial launches – near polar launches
  • Launches for space tourism
  • Other operations as required

Why be in this business? The current worth of the Space Sector is US$330,000,000,000 per year and Australia is only earning money from the radio astronomy and the space communications service. It is a small player, well positioned to player a bigger role servicing launches, but to be competitive, we must keep our operational costs low and that means being close to a major town. With these requirements met and adequate competition for supply of services to the facility, Spaceport Darwin could well see a significant business in the future. We will eventually have a Space Agency and they will be promoting such objectives. Even securing 1/3 of one percent of the space business would see about US$1B income annually with much of that injected back into the local economy through wages, spending and government fees. It is clear that we can secure much more than this if all services are met.

What is the Proposal underpinning the Business Model?

Stage 1

Legal: The Northern Territory (NT) government would need to place a 15 to 20 year hold on any other development in the proposed area while services are put in place and expanded over time. Stage one also requires the clearing of a future car park to be used as a temporary launch pad. Once stage 2 is  implemented, all launches can be moved to their permanentlocation

Technical: A clearing of the Car Park area and a concrete area for launches and testing. The concrete area will be suitable for small launches and balloon launches. The access road, although gravel, should be suitable for large trucks in the dry season. A bunker house with no equipment would be built on the west side of the future Car Park to facilitate a safe house during launches. Not equipment will be left between launches and the building secured and patrolled. Balloon and rocket flights to space will occur from time to time. PlusAerospace (expected name of the company) will manage the site from a launch perspective. That will be source of most of the income

The Car Park clearing will be paid for by grants and other funding. PlusAerospace will look after the mobile plant and other setup as required for launches and will bring shipping containers ready to deploy for the electronics and fuel mixing. The ingredients are of a safe nature until combined and are safe without an ignition source. Only large balloons, sounding rockets and small orbital rockets could be launched from a temporary site.

Point Stephens NT_2Stage 2

Legal: This would only proceed with finance, partnerships and most importantly with customers. A solid commitment from the Northern Territory (NT) government and other legal entities would be needed at that time for long term tenancy and a permanent arrangement for continued services put in place with PlusAerospace as the customer. The government would be responsible for build a sealed road suitable for heavy loads and a 400m bridge suitable for the same heavy loads.

Technical: It would require a large pad for launches and completion of a security perimeter (and fence) that would be easy to patrol and cleared areas for a large concrete launch pad and launch structure. Like the US Kennedy Space Center (KSC) it would need a bunker-like launch control centre 5km away from the launch site with adequate protection. This would need sealed roads from Darwin to support the area. Gas and fuel facilities would be needed and it should be noted that much of the specialist gases used are plentiful in Darwin as they arrive by boat for distribution around Australia.  It is likely that facilities would grow for a crawler and fabrication centre and although these items may be a long way away, such assets and pathways will be included in plans for the site ensuring adequate land is available for the service and safety.

Other Business Model Information

It is too early at this stage and some discussions are private in nature, but this staged approach to a business model will also allow a real growth and need dependent expansion that is very low risk. Government partnerships will ensure that risk is kept low and it is expected that a permanent arrangement will be in place with CASA that has to regularly pass review, but will allow launches without jumping through massive hoops each launch. ie, some permanent restrictions at all times. It should be noted that the proposed runway would be built in a location that would be suitable for operation near the Darwin. The current suggested location may be too close to the airport and will need to be located further away. The launch of the tourist flight (rocket motors) could be positioned in the appropriate airspace for the rocket flights.

Comments

I would seriously love your comments on this approach and will respond as needed. I will begin some serious lobbying for this site unless a better one exists, so please place your thinking caps on and let me know your thoughts.

Reading

This following link is a bit old, but will fill you in on some useful background. Cape York and Weipa Spaceports never progressed and people felt bunt by the experience.

http://www.spacetoday.org/Rockets/Spaceports/Australia.html

The following link is also very old and the Christmas Island spaceport also never progressed:

http://members.optusnet.com.au/virgothomas/space/spaceport.html#History

Darwin Area and Spaceport Darwin

Point Stephens NT_2

ThunderStruck Spacecraft Development Begins

BOR-4 breakdownWinged Spacecraft Takes Form

Our ThunderStruck team has commenced design of the ThunderStruck Spacecraft. This graphic, courtesy of Project Thunderstruck team member David Galea, is just a doodle to break down the benefits of the Russian BOR-4 design. We then looked at Dream Chaser which looks surprisingly similar, but with a modern interior. We too will have a similar design but with some big differences. Our starting length will be 3m (10 feet); our unfueled mass is expected to be 400Kg and optimum payload return will be 50Kg. It will have hypergolic fuel for the space flight – main thrust and hypergolic thrusters.

This From Wikipedia: https://en.m.wikipedia.org/wiki/Hypergolic_propellant

A hypergolic propellant combination used in a rocket engine is one whose components spontaneously ignite when they come into contact with each other.

The two propellant components usually consist of a fuel and an oxidizer. Although commonly used hypergolic propellants are difficult to handle because of their extreme toxicity and/or corrosiveness, they can be stored as liquids at room temperature and hypergolic engines are easy to ignite reliably and repeatedly.

We are now go for liftoff in eerrhhhh …in 6 years… But we have started. We are choosing a suitable fuel at this time – one that is relatively safe for humans and still able to provide the thrust needed to de-orbit and maneuver. There are new fuels – not as powerfully as many of the well known thruster fuels, but sacrificing power for safety could be a really good thing if the numbers stack up.

The Invasion of Space has Begun.

At this time, the Thunderstruck transonic test vehicle has been on hold, but it too will benefit from the spacecraft design kicking off since they may share common components. The Spacecraft will be slow to design and build compared to the transonic testing flier, but we have to start this if we are to finish it in a timely fashion.

It is expected that we will partner with a university that will assist with the build. At this time we are closest to Sydney University and we know that they have similar goals of working with a winged re-entry flier.

It is clear that we are not relying on using the Russian BOR-4 as a blueprint, but it is a starting point. It is also clear that the BOR-4 and the Sierra Nevada Corporation’s Dream Chaser share a lot of common air frame characteristics. So Dream Chaser was the next craft to go under the microscope.

Critical to the design and thus one of the first components to understand is the type of fuel that will be needed. This may determine that we need a bigger craft to carry the tanks or that the shape must be different to handle the large tanks.

Dream Chaser Graphic on top of a Rocket for LaunchDream Chaser is large and has a crew. Our craft does not have a crew and the spacecraft is small in comparison.

Dream Chaser can launch on top of a rocket and we expect ThunderStruck to do the same. ThunderStruck is way smaller and potentially has folding wings and thus could sit inside a fairing making the ride more comfortable.

ThunderStruck will have docking ring and the ability to swap old and new payload canisters. ie to provide a new empt7y canister to , say, an asteroid service craft and bring back a full set of samples.

ThunderStruck will evolve and its capabilities will change as we grow. Our aim is to make the smallest rocket launched spacecraft with wings for re-entry and an exchangeable payload.

 

Apollo 11 Interview in Spaceflight Magazine

Spaceflight-Cover-2014-12(Widget)From Apollo 11 to ThunderStruck

by Robert Brand

It seems that an interview on my life in the space sector has been published. My good friend Nick Howes from the UK did the interview. It concentrates on my Apollo 11 work at the age of 17. No big deal, but it was pivotal in my life I guess and set the scene for what followed and ultimately the ThunderStruck spacecraft

Spaceflight Vol 56 No 12 – December 2014

The teaser for the interview says:

Nick Howes tells the intriguing story of a boy gripped by space and who went on to play an important part in the Apollo 11 story.

I’m afraid that you will have to buy the magazine to see the story of my contribution to Apollo 11, the entire NASA progam from Apollo 11 to the Shuttle and Voyager encounters and even a major ESA contribution for the Halleys Comet interceptor, Giotto.

A little exchange from Facebook.

  • Robert Brand Seems that this is me:
    Nick Howes tells the intriguing story of a boy gripped by space and who went on to play an important part in the Apollo 11 story.
  • Nick Howes Proud to call you a friend, proud to know you… as you should be proud of all you have done… thanks buddy!
  • Robert Brand … and now building his own spacecraft easily capable of circumnavigating the moon and returning to land on earth. A funny and unexpected ending, given that 3 years ago I had no intention of doing anything like this!
  • Nick Howes As I said “pivotal” in so many ways…
  1. admin says:

    Nick also said:

    “The first of my 4 Spacefest Apollo articles is now out. An interview with Robert Brand who had a pivotal and largely untold role in the Apollo story from Australia. Over the next 4 months, my articles with Rusty Schweickart Jack Jack R. Lousma and Sy Liebergot will also come out, pure golddust was the exact phrase of the magazine editor… as they have all been very wonderful with their take and tales on work they did both on Apollo and since”.

    So get your copy of Spaceflight and read all of Nick’s stories over the next 4 issues – I am just thankful that I did not have to follow any of these powerhouses from the Apollo days. They were at the pointy end of the stick. The only think that I can take comfort in is that of the four of us interviewed, I am the only one building a space craft.

    Just below this story on this page there should be a couple of links to “similar stories” about NASA’s Apollo 11 switching centre in Sydney. My fellow co-workers and I had a lot to do with getting that working and you can catch up a bit of the story there. By he way I met with them for a reunion lunch just a few days ago. It was sweet to see them – mind you most were rather scary when I was doing work experience at the age of 17 when I worked on NASA’s Apollo 11 gear.

Air Pressure, Altitude, Balloons and Rockets

Weather Balloon BurstAir Pressure and how it Affects Balloons and Rockets

By Robert Brand

Rockets

One of the big issues for rockets flying to space is the air pressure it must climb through. As a rocket climbs it gets faster and has to push more air out of the way. As it goes higher the air thins and you can see from the table below that it is exponential. Have a look at the 1/100th  fraction of one atmosphere below and you will see that the atmosphere is 1% of sea level. The change is not linear. The atmosphere thins to a tiny percentage at twice that height, but at half the height it is 10% of the sea level pressure.

NASA says: The velocity of a rocket during launch is constantly increasing with altitude. Therefore, the dynamic pressure on a rocket during launch is initially zero because the velocity is zero. The dynamic pressure increases because of the increasing velocity to some maximum value, called the maximum dynamic pressure, or Max Q. Then the dynamic pressure decreases because of the decreasing density. The Max Q condition is a design constraint on full scale rockets.

fractionof 1 atmosphere (ATM) average altitude
(m) (ft)
1 0 0
1/2 5,486.3 18,000
1/3 8,375.8 27,480
1/10 16,131.9 52,926
1/100 30,900.9 101,381
1/1000 48,467.2 159,013
1/10000 69,463.6 227,899
1/100000 96,281.6 283,076

The Falcon9 reaches the speed of sound at 1 min 10 sec into its flight and then reaches Max Q just 8 to 13 seconds later depending on speed,and air pressure variables. Unlike airplanes, a rocket’s thrust actually increases with altitude; Falcon 9 generates 1.3 million pounds of thrust at sea level but gets up to 1.5 million pounds of thrust in the vacuum of space. The first stage engines are gradually throttled near the end of first-stage flight to limit launch vehicle acceleration as the rocket’s mass decreases with the burning of fuel.

Want to know more? This is not full of maths, just some fun stuff about Max Q and reaching orbit.

Balloons

Well for balloons we have a different issue. Balloons have to displace their weight in gas in the atmosphere and that includes displacing enough gas for the weight of the payload too.

Rate of Climb - Fall vs TimeThe climb to maximum altitude for the most part is linear. I discovered this when analysing the stats from my first balloon flight. It was linear until it reached the point that the balloon exploded. If you launch a balloon that does not explode, it will slow its climb and then float. My best guess is that as the climb becomes more difficult due to the air thinning thus and thus the displaced gas is getting closer to the weight of the balloon and payload, but the air resistance is getting less. The size of the balloon is also increasing with height and has to push away a greater volume of air to climb, but the number of air molecules in the increased mass is way less. All up it produces a fairly linear climb. The graph (left) from uplift-1 shows he linear climb and the exponential fall with the parachute deployed. For the parachute, the air gets thicker as it falls and thus slows more as the altitude decreases. Note the initial glitch was caused by a strong thermal just as we let go of the balloon. Once out of the thermal the climb was very linear. It is obvious when the balloon burst.

Altitude and Air PressureAnother view of th same data is shown on the left from UpLift-1’s flight. Note that the rate of climb is linear, but increasing slightly. This would be affected by balloon size and fill amount. The rate of climb may be fast, slow or medium, but that will also change the rate of change of the volume. Not all graphs are the same, but they tend to be similar. Note also that the size of the parachute needs to change with the weight of the payload. The ideal speed for the average payload would be about 5mto 6m per second at the landing altitude, thus landing at Denver, Colorado, USA will require that you make the parachute a little bigger since it is nearly 2Km above sea level and the air is noticeably thinner.

There are good fill charts on the web allowing you to calculate the size of balloon and the amount of Helium or Hydrogen to determine the altitude at which the balloon will explode. More on that another time. The picture at top of page is a weather balloon exploding at altitude.

All up, air pressure can destroy a rocket if its speed is too great and it will destroy a weather balloon if the air pressure gets too low. Both rely on understanding the effects of air pressure, but the dynamics are totally different.

Too finish off the post here is a video of a balloon burst. They are spectacular, especially as the balloons grow to a huge diameter and fill the screen of most wide angle GoPros!:

Apollo Heritage – A GLXP Hangout

Apollo 11 45th Anniversary Hangout - Apollo Heritage and the GLXPApollo 11 45th Anniversary Hangout – Apollo Heritage and the GLXP.

Well the Apollo Heritage Hangout event is over and I had a lot of fun with the interview or should I say “armchair chat”. It was a very comfortable discussion. I am excited to tell you that there is a video of the event. It was recorded and the link is below. I must say that I am very taken with Dr. Pamela L. Gay (the host) and her interview style. I was never left with a feeling of “what will happen next”.

I was on the Apollo Heritage Hangout with Derick Webber, one of the GLXP judges and an easy to get along with type of guy who was also around during the Apollo era. He is also Director, SpacePort Associates. Author of “The Wright Stuff: the Century of Effort Behind your Ticket to Space” and much more.

So without any more chatter, click on the link below and settle in with a drink and enjoy the fun.

Please connect with out team – Team Stellar: http://teamstellar.org/

About Robert Brand:

Works for; and shareholder in a Communications and Aerospace company called PlusComms:

http://pluscomms.com/

Head of the Communications, Tracking and Data Division in Team Stellar.

Worked in Communications support for about 100 NASA and US military space mission and several ESA mission. Stationed at the Parkes Radio Telescope in comms support for the NASA Voyager flyby of Uranus and Neptune and ESA’s Giotto mission to Halleys Comet.

Robert regularly launches stratospheric balloons for both commercial work and scientific research. Some of the commercial flights are supporting space research for universities and private companies. The work is done through his company, PlusComms. He has launched 18 flights and recovered all 18 payloads. He will soon be building drones with supersonic capability (gravity assist).

 

Apollo 11, 45th Anniversary Memories

As mentioned in the last post, I was a 17 year old trainee technician when I had the opportunity to wire up some of the NASA Apollo 11 comms gear here in Sydney. I interviewed Richard Holl for the Apollo 11 40th anniversary. He was on of the NASA staff that manned the centre during the landing and moon walk. Below is a story that will surprise a few people, but it did happen and it almost crippled the Apollo 11 mission.

An Explosion in the Scan-converter.

by Robert Brand

A few weeks before the launch of Apollo 11, the scan-converter at OTC Paddington in Sydney exploded when it was switched on by NASA‘s Richard Holl following a test. The explosion occurred because the scan-converter was wrongly rewired one evening. Weeks of frantic work by Richard Holl and his team resulted in the scan-converter being completely rebuilt. It wasn’t until a few days into the mission that their work was completed in time for the historic broadcast. Richard Holl explains:

“The scan-converter used three phase power. It was the only piece of equipment in the room that did. All the other equipment was running on a 110 volt panel that was well labelled. Black is hot and green is ground in the USA, but in Australia black is neutral. It had originally been hooked up correctly to the US standard as we had just completed a full blown simulation the day before. The unit was fused for 240 volts as it had a three phase power supply, but it was the out of phase power that caused the massive current that did all the damage. Apparently an OTC technician working on other circuits thought the black wire was wrongly connected and changed it. When the scan-converter was switched on the next day it blew up. I got a meter out and checked the incoming power and found the mistake. “I repaired or replaced the slow scan monitor, NTSC monitor, camera, disc recorder, power supplies, and Grass Valley video equipment. The camera in the scan-converter was totally fried. The new camera did not have the inversion modification in it. I couldn’t take the hardware out of the bad one to modify the new one, so I had to buy all the components in Sydney. I couldn’t get the exact relays, so I had to specially design the one for Sydney. It was different to the others. Ted Knotts and Elmer Fredd came over from the USA to help with the repairs. Ted did all the logistics like getting Hewlett Packard in Sydney to fix the waveform monitor and Tektronix to fix the oscilloscope, and getting us the spare parts and tools we needed. Elmer and I would never have gotten it all done without Ted taking care of our needs. I had to perform a lot of magic, but nothing compared to the magic Elmer performed when he started working on the converter logic. I bet we replaced over a hundred transistors (all discrete components) and we were still replacing them while the boys were on their way to the Moon. We made it and so did they”.

I believe that it was around this time (minus 40 years) that the scan converter repairs were completed. Not mentioned in the text above (courtesy of my good associate John Sarkissian and CSIRO) was the fact that a motor/generator set was needed and was arranged and secured to a plank of wood in the basement of the Paddington terminal. It worked!

Photo by Richard Holl (L-R) Ted Knotts, Dick Holl and Elmer Fredd standing in front of the Parkes Scanconverter at OTC Paddington following the mission.

Apollo 11 45th Interview – GLXP

Hangout 006 GLXP Apollo 11 45thRobert Brand is a Special Guest for Apollo 11 GLXP Hangout.

Not much to say, but to follow the link below and be part of the Apollo 11 special event for the Google Lunar X Prize Team Hangout. I am part of Team Stellar – one of the GLXP teams

Many of you will not know that I was one of the many OTC employees that worked on the Apollo 11 comms here in Sydney. I was 17 years old at the time doing work experience. I just happened to be in the right place at the right time when the regular staff needed help. OTC was Australia’s government run international carrier. It was merged with our national carrier when the country deregulated the telco sector in 1992.

I will be discussing my experiences wiring up the Apollo 11 gear in Sydney – not that this was an amazing event, but since I am part of a group building a mission to go to the moon with a Rover, it appears that I am about the only person in the GLXP with a connection to the Apollo 11 event. I have learned a lot from others in the old company where I worked and from personal research. Hopefully I will do an adequate job. I was 17 years old back on the day of the landing.

http://www.googlelunarxprize.org/blog/connect-explorers-watch-google-lunar-xprize-team-hangouts

Note that although the poster states the time as 6PM PST, the time is actually daylight saving time 6PM PDT – That is 11am Sydney time.

I bumped into Buzz Aldrin 2 months ago when I was presenting a talk at Spacefest in Pasadena. I have learned a lot about the missions by talking with these guys.

Buzz Aldrin at Spacefest 2014

Buzz Aldrin at Spacefest 2014

Sydney video scan converter. Photo by Richard Holl left yo right: Ted Knotts, Dick Holl and Elmer Fredd standing in front of the Parkes scan converter at OTC Paddington following the mission

Sydney video scan converter. Photo by Richard Holl left to right: Ted Knotts, Dick Holl and Elmer Fredd standing in front of the Parkes scan converter at OTC Paddington following the mission

Why Break the Sound Barrier with a Small Aircraft?

Supersonic Glider-spacecraftThe Sound Barrier is a Major Steppingstone

As I announced in my last post, Jason, my 12 year old son, will attempt to break the sound barrier. Above I mention that this is actually a steppingstone. “A steppingstone to what?” you may ask. The simple answer is “to build a spacecraft”. So why to we need to break the sound barrier? Well we want to test transonic flight. Not on the way up, but on the way down! ie slowing from supersonic speeds above the sound barrier (Mach 1 and higher) to subsonic speeds )below Mach1

Reentry

This is the hard part for any craft that I may build in the future. We can always buy a ride to space on one of the many well known rockets such as ESA’s Ariane rocket or SpaceX’s Falcon9. So what is the grand plan?

Personally, I see the future of any craft that I build (within an aerospace company) as being a reentry vehicle to return samples from space. This will mean transiting a number of challenging areas in its return to earth. Two of the critical areas are

  • the initial intersection with the atmosphere that will cause massive heating of the exposed portions of the craft – this often requires either:
    • an ablative shield – one that wears away as it heats, carrying the heat away
    • a strong insulator such as the tiles used on the space shuttle
  • crossing the sound barrier – that is the transonic area of flight. This is from Mach 1 to Mach 0.75 – the speed of sound down to 75% the speed of sound.

Hyabusa reentry sequencIf we were using a capsule like the Japanese Space Agency’s (JAXA) return capsule, Hyabusa, transonic regions would not be a problem, but I believe that the future for me is in building an aircraft-like reentry glider that will allow up to 20Kg of payload to safely transit to earth.

The picture to the right is  the landing sequence for JAXA’s Hyabusa that landed in the centre of Australia. It is not complicated, but you do have to know what you are doing and the downside is that it lands whether the winds take the parachute.

I want to fix that problem. I would love to be able to direct the returning spacecraft to a point on the map that allows us to land it without having to recover it from an unknown place in the desert.

Supersonic Aircraft SpikeThe picture at the top of page is somewhat like the expected end product. I expect that the spike will not be on the spacecraft, but it will be on the transonic test vehicle.

The picture at right is a test vehicle with a spike. There are many supersonic aircraft that either have a spike of a very sharp nose well ahead of the wings.

Returning from space the spike would be a liability in the heat of reentry. It will also not be an asset in slowing down a craft. We only need to have the spike to help lower the Resistance to breaking the sound barrier for our tests. In our tests we will use gravity to accelerate the test craft to way past the speed of sound, but shock waves (pressure waves) would slow us down and limit our top speed. We would probably still break the sound barrier dropping the craft from around 40km altitude, but the quicker we transit the sound barrier the higher our top speed.

So what does the spike do?

supersonic shockwaves in a windtunnelAs I said a sharp nose is the same as a spike and the image to the left shows the effect of the spike as it moves the shock wave to the point and away from the wings. A sharp point is a very low area of shock and in the image you can see the shock waves from the wings as very low level compared to the shock from the tiny front of the aircraft. So long as the wings are tucked in behind the initial shock wave than the resistance to flight is lowered.

Now I may have been a bit simplistic here, but none the less, the spike is important to supersonic flight. Since we are wanting to slow down, we can actually round the nose of the returning spacecraft after we conclude the test flights.

So Why Didn’t the Shuttle Need One?

WPointy nose and shockwaves at mach 6.ell it did need to slow down and so you might think that a blunt nose is a good thing, but that is not the reason. But wouldn’t a sharp nose be good for takeoff, spike or no spike? Well yes, but the shuttle had wings that were very wide and a spike could not be placed that far forward. The resulting shock waves on takeoff and especially re-entry would be a bit problem as they would hit the wings.

Re-entry would be the biggest problem. The shock wave from a pointy nose would hit the wings and further heat the air. You would be adding thousands of degrees to the heat that it is already being generated on the leading edge of the wing – not a good idea!

The image above right shows a pointy nose model in a mach 6 airstream. You can see the shock waves hitting the wings midway along their leading edge.

So What Happens with a Blunt Nose?

The image to the right says it all. The blunt nose acts as a ram and pushes the shock wave way to the side. This misses the wings by a long way. The blunt nose does add to drag so that is another benefit, but a minor one.

What Else Protected the Shuttle from Shock?

Ever consider the orange main fuel tank? Where was the shuttle positioned relative to its nose. It had a point, but was really broad.

What effect did that have during launch at high speeds. The shock wave that resulted missed the shuttle entirely. It is important that the top of this tank was far enough forward to protect the shuttle. The whole design and shape of the combined modules on the launch vehicle was super critical and not just a random bunch of sizes. Minimizing shock waves means being able to both protect the vehicle and increase the payload as you have less drag.

In other words, if the main tank had needed less fuel and had been smaller, then it would still have needed to be as high to push the shock waves aside.

Each and every part of an aircraft that changes its size or sticks out causes shock. You must account for it or suffer the consequences.

The image at right clearly shows the  shock wave of the jet disturbing the water. You do not have to be traveling at supersonic speeds to produce shock waves, but the faster you go, the more power is lost and the stronger the shock wave.

My own piece of Hardware in Orbit

kicksatKickSat Mothership Achieves Orbit.

by Robert Brand

Remember the small prototype of our KickSat (photo right)? In mid April, 2014 it was tucked inside its mothership and that was inside the SpaceX Falcon 9 rocket that blasted into orbit with the ISS resupply cargo module.

Wikipedia says:This was the SpaceX CRS-3, a cargo resupply mission to the International Space Station, contracted to NASA, which was launched on 18 April 2014. It was the 5th flight for SpaceX’s uncrewed Dragon cargo spacecraft and the third SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract.”

“This was the first launch of a Dragon capsule on the Falcon 9 v1.1 launch vehicle, as previous launches used the much smaller v1.0 configuration. It was also the first time the F9 v1.1 has flown without a payload fairing, and the first experimental flight test of an ocean recovery of the first stage on a NASA/Dragon mission.”

So what became of our KickSat? Well this was a joint effort from a few good Facebook friends. We chipped in a $100 each to own our first bit of space hardware and we just hoped it would get into orbit. Shelley Marie Johnson and April Larson joined with me and for US$300 we secured our KickSat.

On the 18th April 2014, the three of us actually owned a piece of hardware in orbit and it was there for 4 weeks!

In Orbit! Let me repeat that much louder:

IN ORBIT!!!

KickSat MothershipSadly it never deployed from the mothership. The clock died in orbit – probably a high energy particle hitting the wrong part of the processor chip! Oh well. None the less our little baby was in orbit. The image on the right shows what it was supposed to do – the KickSat antennas also being the springs used to deploy the Sprites.

This is a quote from Wikipedia and is accurate: The KickSat CubeSat, which was developed by Cornell University and funded through a campaign on the KickStarter website, was intended to deploy a constellation of 104 cracker-sized femtosatellites called “Sprites”, or “ChipSats”. Each Sprite is a 3.2-centimeter (1.3 in) square which includes miniaturised solar cells, a gyroscope, magnetometer and a radio system for communication. KickSat failed to deploy the Sprites, and reentered the atmosphere on 14 May.

NASA EDGESo it orbited for 4 weeks while they tried to get it to deploy the small KickSats / Sprites and then burned up on re-entry without deploying them.

On another note, NASA Edge TV wanted to interview me over the KickSat and what it meant to me and others following its progress. An 8 minute interview that was prelaunch. After 2 launch failures, NASA EDGE decided not to got back for the next launch window as the weather was bad. The weather cleared and they launched, so no interview! Maybe next time.

None the less – I had my first piece of hardware in orbit. Something that I owned (with 2 others) circled the earth every 90 minutes for 4 weeks! An amazing and wonderful experience.

kicksat1    kicksat-1__1

Robert Brand – Speaker

Robert Brand Speaking at Spacefest VI 2014

Need a Speaker for that Special Dinner?

Want a passionate and entertaining speaker for your event? Someone that motivates, tells a story with enthusiasm and clarity, someone that has done it all!

Robert spoke at Spacefest in Pasadena, Ca in May 2014 and received comments such as “that presentation alone was worth the cost of registration”.

Twitter messages continued for weeks after the event. This one from @cybernova: Reminiscing on how incredible the 3D images of Mars and the lunar landing looked. Huge thanks to @robertbrand for putting that together! – 29 May 2014

So why the excitement? Robert is a skilled presenter who speaks about topics ranging from Space to Inspiring kids to think big.

Robert presenting in CroatiaYes Space! Robert is one of Australia’s leading space entrepreneurs and building space services and some a space craft. At the age of 17 he even worked on the Apollo 11 switching centre in Sydney that brought the world the feed of Neil Armstrong’s first steps on the moon. Since then he has worked in supported most of NASA’s Apollo missions, Skylab, Voyager and was stationed at the Parkes Telescope for ESA’s Giotto probe to Halleys Comet.

Robert worked in Communications for these space events, but at the age of 59 migrated quickly into the Space sector, making an instant hit world wide. He has appeared many times on ABC Radio on such shows as Linda Mottram’s Morning Show in Sydney (702), Richard Glover’s Drive (702) The Science Show, Radio Australia’s Breakfast Club and many stations around Australia.

ABC Radio’s Linda Mottram: Robert Brand’s expansive vision for Australia in aerospace is inspiring and exciting. He has the kind of energy and vision that could easily make Australia a leader. How starkly it contrasts with the mundane pronouncements from political leaders that leave so many of our best brains running for the door.

Internationally he has appeared on Radio in the UK, The Space Show in the US and This Week in Science (US). He has also had many TV appearances in Australia commenting on current space matters.

Robert speaks regularly at Spacefest in the US where he competes for a speaking spot with space experts from all over the world. He has spoken for the last 3 consecutive years on the same program as Apollo astronauts, mission controllers, planetary scientists and the key note speakers like Prof. Brian Cox (UK) and Dr Carolyn Porco. He has also spoken at ISDC and space conferences throughout Australia as well as Engineers Australia. The video below shows Robert and his son Jason (12) in Croatia launching balloons and being interviewed on Croatian TV. Robert is not just someone that did something great in the past, he is pushing forward into new and amazing frontiers.

Robert’s subjects although they appear mainly science and space oriented; include:

  • Motivating youth to achieve their goals
  • 3D slide presentations
  • Using Social Media to accelerate career change
  • Thinking outside of the box to stimulate new ideas and create change when budgets diminish
  • Wild Sports. Diving with sharks, cave diving, flying ultralights, gliding, climbing, abseiling, etc
  • Stratospheric balloons – 19 successful flights and recoveries – breaking records.

His presentation slides are mainly original material from many of his exploits, balloon and space work, but he does not repeat any text from the screen. His presentations are all about natural speech and because “he knows his stuff” he talks effortlessly to engage the audience.

Robert and Jason presenting in CroatiaHe sometimes speaks with his 12 year old son Jason. Jason is an accomplished speaker and demonstrates how a young mind can grow when not limited by normal constraints. Jason will be attempting to break the sound barrier with a Radio Controlled aircraft in the next 12 months. He will fly it as if he is in the cockpit using a video radio link and home built equipment all of his design.

Jason has spoken at Engineers Australia with his father and in front of 100 scientists in Croatia.

Robert Brand’s speaking fees are $3,000 for a dinner, lunch or breakfast engagement in Sydney. Other cities or engagements will need to be subject to a quotation.

As an introductory offer, for 2014, his standard fee, if booked direct, will be 50% off.

$1,500

Robert’s style is passionate and energetic and he moves and gesture a lot. Boring is not in his vocabulary. He sometimes challenges the audience so there is usually a bit of interaction. He also uses the occasional prop. A cordless microphone is preferred. A projector and laser pointer are essential and he must use my own PC if doing a 3D presentation.

Balon Stellar - Stratosfera 30km and RoverRobert is also the head of the Communications, Tracking and Data for Stellar – a space company sending a rover to the moon in the next three years. Jason is the Australian Student Representative. Together they travel internationally to talk about Space and to launch Stratospheric Balloons with student payloads to help stimulate space science in those countries. They have just returned from Croatia.

Robert will speak at “no cost” or a cost recovery basis on occasional Radio and TV interviews as well as presentations for small associations, not for profit groups and student focused groups. Simply ask.

Call +61 448 881 101

Robert and Jason presenting in Croatia

NASA EDGE TV Appearance

nasatvNASA EDGE TV and KickSat.

by Robert Brand.

I have long been both a watcher and supporter of NASA EDGE TV so it was great when asked if I would take part in a pre-launch interview for the KickSat project (aboard SpaceX CRS-3). NASA EDGE has changed from the early days when it was a little less polished and has now cemented a strong place in the NASA TV family.

NASA EDGE is a video podcast which explores different missions, technologies and projects developed by NASA. The program was released by NASA on March 18, 2007.  They also do live streaming video and I have been asked to take part the pre-launch activities for SpaceX Falcon9 launch in about 12 days’ time. I will be talking about the KickSat project that will be riding on board the rocket.  In fact a KickSat that I will part own will be on board, ready to fly into space and then into orbit as a complete spacecraft.

Watch out for the launch of SpaceX CRS-3 and of course KickSat

Things may change, but I will provide details as it gets closer to launch time. Let’s hope I’m still part of the program, but as a seasoned speaker, I know what can go wrong with any booking or any launch.

Want to know more about NASA EDGE?

What is NASA EDGE?

NASA EDGE

NASA EDGE. One NASA. Two hosts. Twenty thousand plus rocket scientists. We have liftoff!

NASA EDGE is different. Unscripted and unpredictable, NASA EDGE takes a unique look in and around the greatest space program on the planet.

Whether it’s the latest launch or the coolest gadgets, NASA EDGE hosts provide an offbeat, funny and informative look behind the NASA curtain. If you’ve ever wanted to learn about NASA but thought you needed to be a rocket scientist, wait no longer. Watch NASA EDGE and embrace your inner astronaut.

www.nasa.gov/multimedia/podcasting/nasaedge

 

 

 

KickSat – Owning a Spacecraft.

kicksatKickSat – Our Personal Spacecraft

Hey, guys, be jealous. Be very jealous! Jason and I own 1/3 of a real spacecraft that will fly in 18 days aboard a Falcon9. It is a resupply craft for the ISS, so it will be in sight of the International Space Station. So not only will it fly in space, it will have been close to the ISS!

It is to be launched with a lot of others from a special box that will eject all of the Kicksats It is sometimes called the Mothership. After three days flying free after being released, our spacecraft will flutter back to earth somewhere, probably intact. It will never be found, but no matter. My very own (part of a) spacecraft will have flown in space and back. How many of you can say that! This will be one great space adventure.

Pictured top right is a prototype. I keep this in my wallet to show people how tiny a spacecraft can be. People just don’t believe it until they see it. The big silver area is where the solar panel sits. The computer and radio receiver and transmitter are the chip in the middle. HAM radio will supply the ground links. Yes, this is just one crazy experiment – a swarm of spacecraft all able to communicate with each other and with earth.

MissionClockSpaceX Falcon9 Resupply Mission

This launches in 18 days. There is a great iPhone App and probably one for Android. It is Called MissionClock. You can follow the launch of the Falcon9 and the KickSats. This is of special interest to the creator of MissionClock as he has also invested in a KickSat. The picture on the left is the main screen for the resupply flight and the KickSat mission. I have used this application for many years. It is really good and I recommend it.

Before the flight I will provide the links to be able to track the swarm and our little craft.

If you are a HAM radio operator, I can help organise the information that you need to help with the tracking.

This flight is ground breaking. It is both a swarm and a crowd funded flight.

The Flight in More Detail

Once in orbit, the Falcon 9 will release the Dragon towards the ISS and, a few minutes later, pop the KickSat mothership into orbit. Did you see the movie “Gravity”? The slight delay is to avoid a space debris disaster like the movie. It’d be a risk if all those tiny satellites end up pinging around the world at high speed in exactly the same orbit as the space station.

The mothership will spend at least seven days in orbit before the sprites (the tiny KickSats) are released. “There are some space debris mitigation concerns,” admits Zac Manchester – the creator of the project, “but we’ve worked with the ISS Program Office to make sure it’s safe for the ISS.” The sprites’ orbit is so low that they will only survive for around three days before the upper atmosphere drags them to destruction.

What do They Do?

Some of the sprites will do little more than go beep, like the original Sputnik, others will transmit identification codes and some will even be used for science. Those fitted with magnetometers – like the ones that provide your smartphone compass – will transmit data about the Earth’s magnetic field. Others will send back information on temperature, orientation or radiation.

Stay tuned for more details on the flight. It will end in about one month’s time. That is the mothership below ejecting the Sprites – or KickSats. Who owns the other 2/3rds of the craft? S some Facebook friends and I chipped in #100 each to buy this baby.

KickSat Mothership