ThunderStruck Spacecraft Development Begins

BOR-4 breakdownWinged Spacecraft Takes Form

Our ThunderStruck team has commenced design of the ThunderStruck Spacecraft. This graphic, courtesy of Project Thunderstruck team member David Galea, is just a doodle to break down the benefits of the Russian BOR-4 design. We then looked at Dream Chaser which looks surprisingly similar, but with a modern interior. We too will have a similar design but with some big differences. Our starting length will be 3m (10 feet); our unfueled mass is expected to be 400Kg and optimum payload return will be 50Kg. It will have hypergolic fuel for the space flight – main thrust and hypergolic thrusters.

This From Wikipedia: https://en.m.wikipedia.org/wiki/Hypergolic_propellant

A hypergolic propellant combination used in a rocket engine is one whose components spontaneously ignite when they come into contact with each other.

The two propellant components usually consist of a fuel and an oxidizer. Although commonly used hypergolic propellants are difficult to handle because of their extreme toxicity and/or corrosiveness, they can be stored as liquids at room temperature and hypergolic engines are easy to ignite reliably and repeatedly.

We are now go for liftoff in eerrhhhh …in 6 years… But we have started. We are choosing a suitable fuel at this time – one that is relatively safe for humans and still able to provide the thrust needed to de-orbit and maneuver. There are new fuels – not as powerfully as many of the well known thruster fuels, but sacrificing power for safety could be a really good thing if the numbers stack up.

The Invasion of Space has Begun.

At this time, the Thunderstruck transonic test vehicle has been on hold, but it too will benefit from the spacecraft design kicking off since they may share common components. The Spacecraft will be slow to design and build compared to the transonic testing flier, but we have to start this if we are to finish it in a timely fashion.

It is expected that we will partner with a university that will assist with the build. At this time we are closest to Sydney University and we know that they have similar goals of working with a winged re-entry flier.

It is clear that we are not relying on using the Russian BOR-4 as a blueprint, but it is a starting point. It is also clear that the BOR-4 and the Sierra Nevada Corporation’s Dream Chaser share a lot of common air frame characteristics. So Dream Chaser was the next craft to go under the microscope.

Critical to the design and thus one of the first components to understand is the type of fuel that will be needed. This may determine that we need a bigger craft to carry the tanks or that the shape must be different to handle the large tanks.

Dream Chaser Graphic on top of a Rocket for LaunchDream Chaser is large and has a crew. Our craft does not have a crew and the spacecraft is small in comparison.

Dream Chaser can launch on top of a rocket and we expect ThunderStruck to do the same. ThunderStruck is way smaller and potentially has folding wings and thus could sit inside a fairing making the ride more comfortable.

ThunderStruck will have docking ring and the ability to swap old and new payload canisters. ie to provide a new empt7y canister to , say, an asteroid service craft and bring back a full set of samples.

ThunderStruck will evolve and its capabilities will change as we grow. Our aim is to make the smallest rocket launched spacecraft with wings for re-entry and an exchangeable payload.

 

Leave a Reply