UpLift-19 Video and Pictures

UpLift-19 Media and Information

This is an unedited video and still video images from a GoPro3 Black edition camera of a weather balloon payload area. It climbs to 33.333Km where the balloon bursts and the payload free-falls back for recovery. It was a commercial flight fo Clintons Toyota, Campbelltown, NSW, Australia. They also sponsored a non-commercial payload for Project ThunderStruck – our first test for the Project for a supersonic glider to break Mach 1.5 (1,800kph / 1,120mph)

http://projectthunderstruck.org

The so called Space Chicken, frame and with the parachute deployed, it reached a top speed of 400kph / 250mph. At the 12 minute 14 second mark on the video (2 hours into the flight) there is a noticeable jarring of the payload and a small pop. This is the balloon exploding. Immediately shredded balloon hits the payload as there is virtually no air to slow it. 2 seconds later, the payload tilts showing the cloud of shredded balloon About 1 minute into the free fall we reached 400kph according to the telemetry. The drag increases at lower altitudes, so the effect of the wind is worse as it descends. It then improves as the air density increases. In the seconds after release you get to glimpse the balloon shreds rocketing into the payload from the explosion and then the cloud of shredded material in the sky. About 10 seconds later there are glimpses of the blue and white parachute not doing much during the fall due to the low air resistance. The cutdown box that is placed above the parachute actually fouls the parachute slightly during the free fall before it becomes effective at slowing the payload. The fouled parachute causes spin at the faster speeds. The video finish with the payload still well above the clouds. This was UpLift-19 by Robert and Jason Brand for Clintons Toyota.

PS, notice that thin blue line in the video and the photos? That is all the atmosphere we have and that is pretty thin near the top. 72 percent of the atmosphere is below the common cruising altitude of commercial airliners (about 10,000 m or 32,800 ft)

Jason and Robert Brand setting up the cameras on UpLift-19

Jason and Robert Brand setting up the cameras on UpLift-19

 Balloon-Burst1-seconds-after-the-event-UpLift-19

Balloon-Burst1-seconds-after-the-event-UpLift-19. Those are the shreds of the balloon.

Balloon Burst3 seconds after the event - UpLift-19

Balloon Burst3 seconds after the event Note the cloud is getting smaller as the thin air slows it faster. – UpLift-19

Balloon Burst4 seconds after the event - UpLift-19

Balloon Burst4 seconds after the event – UpLift-19 – yes, that is the sun.

Balloon Burst5 seconds after the event - UpLift-19

Balloon Burst5 seconds after the event – UpLift-19

Balloon Burst6 with Parachute in view seconds after the event - UpLift-19

Balloon Burst6 with Parachute in view seconds after the event – UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds - UpLift-19

Balloon Burst7-Effects of drag are clear after only 24 seconds – UpLift-19

Balloon Burst8 - Speed has slowed, but drag is greater in the thickening atmosphere - UpLift-19

Balloon Burst8 – Speed has slowed, but drag is greater in the thickening atmosphere – UpLift-19

Note: The images above are from the High Definition Video, not still images. The quality of our camera work has increased dramatically with some improvements to our methodology.

Breaking Mach 1, but by How Much?

A Zero Pressure Balloon fill_2610Hitting the Mach.

by Robert Brand

The aim of Project ThunderStruck is hitting Mach 1 and a bit more for good measure. Basically breaking the sound barrier. We may reach Mach 1.5, but that will be very much related to the height we reach with the balloon and few other factors. Project ThunderStruck is about Breaking Mach 1 – anything faster is a bonus.

ThunderStruck will rise to 40Km or more for its record attempt. It will need to use a Zero Pressure Balloon capable of reaching 40Km plus carrying a payload in the region of 20Kg including cameras and electronics on the Balloon.

Thanks to http://hypertextbook.com/facts/JianHuang.shtml for the information below regarding Joe Kittinger’s Record Jump in 1960:

Captain Kittinger’s 1960 report in National Geographic said that he was in free fall from 102,800 (31.333Km) to 96,000 feet (29.26Km) and then experienced no noticeable change in acceleration for an additional 6,000 feet (1.83Km) despite having deployed his stabilization chute.

The article then goes on the mention that he achieved 9/10ths the speed of sound and continued to suggest (with maths) that he would have broken the speed of sound with an additional 1,300 m (4,200 feet) of free fall.

If we assume an average acceleration of 9.70 m/s2, it is a simple matter to determine the altitude at which a skydiver starting at 40 km would break the sound barrier.

 maths to calculate altitude at which the sound barrier is broken

That’s an altitude of about 116,000 feet or 35.36Km. So how fast might we go starting at 40km altitude?

maths to calculate the max speed from altitude

Sorry if the equations are difficult to see – that is the quality from the website.

This is nearly 200 m/s faster than the local speed of sound. At the incredible speeds we’re dealing with, air resistance can not be ignored. A maximum of Mach 1.3 seems very reasonable for a human in a pressure suit compared to the prediction of Mach 1.6.

Given that the altitude of the glider release will be 40Km or more, then a top speed of near Mach 1.5 is possible. If we go higher, then we go faster.

Why is ThunderStruck an Aircraft?

Why is it considered an aircraft if it is in free fall with little to no drag? Simply because it is designed to use the little airflow to stabilise itself. Like and aircraft at lower heights uses its control surfaces for stable flight, ThunderStruck does the same. As you might remember from the jumps in the past by Joe Kittinger and Felix Baumgartner, they had serious trouble controlling spin. ThunderStruck will use the exceedingly thin air to control the spin and other forces acting on the craft during its record breaking dive.

After the dive and breaking the sound barrier, ThunderStruck will pull out of the dive under the control of RC pilot Jason Brand (12 years old) and level off, washing off excess speed. It will then fly to the ground under manual control to land just like any other aircraft.

This piece on Felix Baumgartner from Wikipedia:

203px-Felix_Baumgartner_2013Felix Baumgartner; born 20 April 1969, is an Austrian skydiver, daredevil and BASE jumper. He set the world record for skydiving an estimated 39 kilometres (24 mi), reaching an estimated speed of 1,357.64 km/h (843.6 mph), or Mach 1.25, on 14 October 2012, and became the first person to break the sound barrier without vehicular power on his descent.

Baumgartner’s most recent project was Red Bull Stratos, in which he jumped to Earth from a helium balloon in the stratosphere on 14 October 2012. As part of this project, he set the altitude record for a manned balloon flight,[8] parachute jump from the highest altitude, and greatest free fall velocity

The launch was originally scheduled for 9 October 2012, but was aborted due to adverse weather conditions. Launch was rescheduled and the mission instead took place on 14 October 2012 when Baumgartner landed in eastern New Mexico after jumping from a world record 38,969.3 metres (127,852 feet and falling a record distance of 36,402.6 metres. On the basis of updated data, Baumgartner also set the record for the highest manned balloon flight (at the same height) and fastest speed of free fall at 1,357.64 km/h (843.6 mph), making him the first human to break the sound barrier outside a vehicle.

This piece on the Speed of Sound from Wikipedia:

The speed of sound is the distance traveled per unit of time by a sound wave propagating through an elastic medium. In dry air at 20 °C (68 °F), the speed of sound is 342 metres per second (1,122 ft/s). This is 1,233 kilometres per hour (666 kn; 766 mph), or about a kilometer in three seconds or a mile in five seconds.

The Speed of Sound changes with altitude, but surprisingly this is not due to density or pressure, but with temperature!

512px-Comparison_US_standard_atmosphere_1962.svgDensity and pressure decrease smoothly with altitude, but temperature (red) does not. The speed of sound (blue) depends only on the complicated temperature variation at altitude and can be calculated from it, since isolated density and pressure effects on sound speed cancel each other. Speed of sound increases with height in two regions of the stratosphere and thermosphere, due to heating effects in these regions.

You can click of the image  (left) to enlarge the image. For the purposes of this flight, we will be using the speed of sound at sea level.

Will there be a Sonic Boom?

Yes, but it will not likely to be heard. In fact there will be two. One as it breaks the sound barrier and goes supersonic and one again as it slows to subsonic. Givent he size of the craft and the distance and thin atmosphere, it is unlikely to be heard from the ground.

Our Aerospace Adviser Asks Questions. Project ThunderStruck

Area_rule_unifilar_drawing.svgAnswering our Adviser’s Initial Questions

Below is an exchange between our new adviser to the project (to be announced officially soon and myself (Robert Brand). Here are his initial comments and please remember that he has not seen anything yet. Our adviser is a pilot with an aerospace engineering degree.

Our Adviser  Hi Robert, Here are a few questions and thoughts.

1. Propulsion

At a first glance you may think you don’t have a propulsion problem, because the thing is falling down.
The fact is, you do. The basic forces and their components (lift, weight, thrust and drag) are always in balance as long as the aircraft is not accelerating in any axis.

This is valid the other way around as well: The aircraft will accelerate as long as the forces are not in balance.
For your case, you need to have the capability to accelerate beyond the sound barrier.

The problem is that the parasitic drag increases exponentially as you approach M=1 and because you are going at a certain angle towards the ground, a certain component of this force, or all of it if you dive vertically, adds to your lift. Once your lift becomes greater than your weight, you will start to slow down.

If this happens before M=1, you will never reach supersonic speed. If it happens after M=! you can further accelerate, because the drag drops after transonic. Transonic is the worst place to be. I order to be supersonic, you must achieve M=1 ASAP, before the air becomes dense.

If you drop from 33km, forget it, because at 30km you can already feel the effects of atmosphere.
The first thing you need to do is apply total surface design, or coke-bottling. The total surface of your craft must be consistent, so at the place where you have wings, your fuselage must be narrower. This dictates your fuselage to be in a shape of a coke bottle. This will reduce drag significantly.

Also, center of lift on the wings changes in supersonic flight and you need to cope with that. There are two strategies, variable wings or variable centre of gravity. I have a very original idea how to solve that.

2. Stability

Any object going through a fluid tends to assume a low drag position. Sometimes this low drag position means rotating and spinning.
You can solve this problem by active control (unless you have f-16 engineers on board, forget it) or aircraft design.
I would suggest delta wings, high swept. Delta wing has an inherent autostability feature and high sweep angle to reduce drag and effect of the wings.
Accept it, your aircraft can be designed either for high speeds or low speeds, unless you have flaps or variable wing geometry.

———————

My Response

I look forward to how he views this and I will report back soon. I expect that I will have allayed most of his fears:

Firstly we are already applying the constant area rule. Even the A380 has aspects of the rule in the design. I lectured at Sydney Uni on the subject only a few weeks back. I understand the rule and some other rules to do with supersonic flight, although their effects are much less than the constant area rule.

Yes, the wings may very well be more swept back than in the image on the site. We will do drop tests to a certain the best wing shape and we have access to a wind tunnel.

The wings will be symmetrical (top and bottom)– ie zero lift. They will be therefore not an issue at supersonic speeds. The elevator will provide the “lift” with speed at lower altitudes. Yes, it will land “hot” – we may use “flaperons” ie combined flaps and ailerons. It should be noted that these are less effective as ailerons when they are biased down as flaps, but they will be bigger than needed. They will be symmetrical also. Flaperons are really ailerons  that are mixed with the flaps signal on the transmitter to bias them both “on” as flaps/ The ailerons do not work with the same efficiency when they are both biased down, but they do work. We may use separate flaps, we may not use flaps. Testing will determine the stability and best options.

Below is a video that shows how they mix the signals in the transmitter of radio controlled models to adjust the various control surfaces. This is a third party video

The spin will be counteracted by the large ailerons even in low air, the trick is to stop the spin in the first place by making the craft very symmetrical and test that aspect.

Our novel answer to controlling the need for different centres of gravity: We will have serious control of the centre of gravity in the craft and we will be able to move the batteries and electronics with a screw mechanism back and forward in the fuselage. This will keep the craft from being unstable at supersonic speeds. Once it goes back to subsonic, we will begin moving the centre of gravity back as we begin to level out the flight and slow the craft.

At slower speeds, we have air brakes that will slow the craft if needed

The supersonic spike at the front of the aircraft is used to create the shock wave with a pin point device ahead of the fuselage and ensure that the biggest part of the shock misses the wing entirely. A shock wave over the wing creates massive drag and this is why many pilots in the early days, tried to break the sound barrier and failed. The spike doubles as a VHF / UHF antenna

Three weeks ago we launched a payload mainly of wood, covered in bubblewrap for the electronics and, with the parachute deployed, it reached 400kph. For the event we will be using a Zero Pressure Balloon to get to over 40Km altitude. If the 9Kg of the payload are not enough, we will increase the weight and size of the craft. We will brake the sound barrier, but need to show it is a fully working aircraft after the dive.

In World War II bombs from high altitude aircraft regularly broke the sound barrier. We will shift the centre of gravity well forward and act like a bomb. We should be able to punch through that barrier with a lot to spare – even Felix Baumgartner broke he sound barrier for his jump altitude of 39Km. He was not very aerodynamic. We expect to terminate supersonic flight at around 31Km
Yes, transonic is a bad place. We do not intend to allow the craft to stay there! Punch through while the air is super thin and keep accelerating!

Will we make Mach 1.5? – it depends on our launch altitude. We will achieve Mach 1 – the sea level speed of sound is our target. About 1200kph.

Area_rule_unifilar_drawing.svgThere is much more, but I expect that I have answered most of your questions in this email. We will be using ITAR controlled GPS units for supersonic tracking and also we will be using radar transponders to warn other aircraft. The Jason and I will be testing a lot of aspects of the flight with drop tests from balloons. I will be launching another balloon in a week’s time.

The picture above shows the constant area rule – efficiency is gained by the cross-sectional area of the aircraft being constant along its length. The fuselage gets thinner where the wings are as there area has to be accounted for. This rule is important as aircraft get close to the sound barrier and this is why Boeing 747 aircraft were so efficient.

Note the light blue area has to be the same as the dark blue area, including the area of the wings. This id the “coke bottle” shape that our adviser mentioned

Air Pressure, Altitude, Balloons and Rockets

Weather Balloon BurstAir Pressure and how it Affects Balloons and Rockets

By Robert Brand

Rockets

One of the big issues for rockets flying to space is the air pressure it must climb through. As a rocket climbs it gets faster and has to push more air out of the way. As it goes higher the air thins and you can see from the table below that it is exponential. Have a look at the 1/100th  fraction of one atmosphere below and you will see that the atmosphere is 1% of sea level. The change is not linear. The atmosphere thins to a tiny percentage at twice that height, but at half the height it is 10% of the sea level pressure.

NASA says: The velocity of a rocket during launch is constantly increasing with altitude. Therefore, the dynamic pressure on a rocket during launch is initially zero because the velocity is zero. The dynamic pressure increases because of the increasing velocity to some maximum value, called the maximum dynamic pressure, or Max Q. Then the dynamic pressure decreases because of the decreasing density. The Max Q condition is a design constraint on full scale rockets.

fractionof 1 atmosphere (ATM) average altitude
(m) (ft)
1 0 0
1/2 5,486.3 18,000
1/3 8,375.8 27,480
1/10 16,131.9 52,926
1/100 30,900.9 101,381
1/1000 48,467.2 159,013
1/10000 69,463.6 227,899
1/100000 96,281.6 283,076

The Falcon9 reaches the speed of sound at 1 min 10 sec into its flight and then reaches Max Q just 8 to 13 seconds later depending on speed,and air pressure variables. Unlike airplanes, a rocket’s thrust actually increases with altitude; Falcon 9 generates 1.3 million pounds of thrust at sea level but gets up to 1.5 million pounds of thrust in the vacuum of space. The first stage engines are gradually throttled near the end of first-stage flight to limit launch vehicle acceleration as the rocket’s mass decreases with the burning of fuel.

Want to know more? This is not full of maths, just some fun stuff about Max Q and reaching orbit.

Balloons

Well for balloons we have a different issue. Balloons have to displace their weight in gas in the atmosphere and that includes displacing enough gas for the weight of the payload too.

Rate of Climb - Fall vs TimeThe climb to maximum altitude for the most part is linear. I discovered this when analysing the stats from my first balloon flight. It was linear until it reached the point that the balloon exploded. If you launch a balloon that does not explode, it will slow its climb and then float. My best guess is that as the climb becomes more difficult due to the air thinning thus and thus the displaced gas is getting closer to the weight of the balloon and payload, but the air resistance is getting less. The size of the balloon is also increasing with height and has to push away a greater volume of air to climb, but the number of air molecules in the increased mass is way less. All up it produces a fairly linear climb. The graph (left) from uplift-1 shows he linear climb and the exponential fall with the parachute deployed. For the parachute, the air gets thicker as it falls and thus slows more as the altitude decreases. Note the initial glitch was caused by a strong thermal just as we let go of the balloon. Once out of the thermal the climb was very linear. It is obvious when the balloon burst.

Altitude and Air PressureAnother view of th same data is shown on the left from UpLift-1’s flight. Note that the rate of climb is linear, but increasing slightly. This would be affected by balloon size and fill amount. The rate of climb may be fast, slow or medium, but that will also change the rate of change of the volume. Not all graphs are the same, but they tend to be similar. Note also that the size of the parachute needs to change with the weight of the payload. The ideal speed for the average payload would be about 5mto 6m per second at the landing altitude, thus landing at Denver, Colorado, USA will require that you make the parachute a little bigger since it is nearly 2Km above sea level and the air is noticeably thinner.

There are good fill charts on the web allowing you to calculate the size of balloon and the amount of Helium or Hydrogen to determine the altitude at which the balloon will explode. More on that another time. The picture at top of page is a weather balloon exploding at altitude.

All up, air pressure can destroy a rocket if its speed is too great and it will destroy a weather balloon if the air pressure gets too low. Both rely on understanding the effects of air pressure, but the dynamics are totally different.

Too finish off the post here is a video of a balloon burst. They are spectacular, especially as the balloons grow to a huge diameter and fill the screen of most wide angle GoPros!:

Project ThunderStruck Update

More News on Project ThunderStruck

Thanks for the support in both contributions of dollars and more importantly at this stage, getting the word out and helping with services. Tim Gagnon is a fine graphic artist from Florida and he has pledge support by offering to design the mission patch. If you have any thoughts about his skills, have a look at his website. I believe that he has done one or two before!

KSCartist.comKSCartist.com Fine Art & Graphic Design from America’s Space Coast

Spending Your Contributions

Now a little detail on how we will spend your contributions. I did say it would cost $80,000 and that was no exaggeration. For a start there is about $10,000 worth of electronics to buy and test for the final flight and that is just the TV link, the telemetry, the control system for flight, cameras, video from the balloon to see the aircraft and the release, the tracking systems for the balloon and the tracking for the aircraft, the balloon flight termination system. The balloon for the final flight will cost over US$10,000 and the helium will cost $3,000. We will have to buy 2 radar transponders to warn aircraft of our position and they cost $2,000 to $5,000 each (and are heavy too).

Every two weeks we will do a weather balloon flight to test the latest systems for Project ThunderStruck and these will cost between $1,000 and $2,000 dollars each and take up our whole weekend traveling and staying in hotels. Petrol alone costs us $300 for the trip and launching and recovering our systems. Below is a video of a launch we did in Croatia. You will see that it is very difficult and requires a lot of materials and you don’t always recover them. So far we have recovered 100% of our payloads, but one day….

The GPS tracking system will be special as ordinary systems will not work at supersonic speeds. You need a special clearance to buy these and we need 2 and they cost $6,000 each.

The airframes will be expensive and we will need two. Jason has said that since most of our antennas are internal, the airframe cannot be made from carbon fibre alone or the signals will be severely attenuated. He will also need to have sections of the fuselage and possibly parts of the wing fabricated from a material such as Kevlar.

phased circula polarised antenna - double mushroomThe picture, right, is an antenna that may be on the aircraft and shows why we must locate it inside of the airframe. It is a little fragile to leave out in a 1,800kph airstream!

 

CASA – Australia’s Civil Aviation Safety Authority

Our Civil Aviation Safety Authority will also likely want us to travel to a remote part of the country for the big event. That will probably be one of our biggest costs – transporting all that gear and setting it up in the middle of nowhere and that is not a two person activity. We will need transport and accommodation for a huge crowd of people.

I look forward to to telling you more about the technical parts of the mission in the next update for Project ThunderStruck.

Project ThunderStruck Launched

Project ThunderStruck set to Break Barriers ThunderStruck vertical

by Robert Brand

Imagine a time when a 12 year student could build a supersonic glider 2.5m / 8ft long, attach it to a huge helium or hydrogen balloon and take it to the edge of space, release it, fly it into a dive back to earth that will reach Mach 1.5 / 1,800kph / 1,120mph and land it. Well that time is now and the student is Jason Brand from Sydney Secondary College / Balmain Campus. He is in year 7 and has already broken plenty of records. Breaking the sound barrier will be another cool record. His flight will break a lot of other records too.

  • Fastest RC plane
  • Fastest glider (of any type)
  • Highest flight
  • The longest dive
  • Youngest person or RC pilot to break the sound barrier
  • there are plenty more, but who’s counting

The event will take 6 to 9 months to complete and the testing started 3 weeks ago when a non-aerodynamic payload (space chicken from Clintons Toyota) reached speeds of 400kph / 250mph with its parachute deployed. This is because the air is pretty thin up at 33.33Km or 1/3 the way to space.

Rankins Springs Free Fall UpLift-19The space chicken was a simple test and we are now happy that we can easily fly at speeds of Mach 1.5 in the very thin air high up in the stratosphere. Left is a picture of the chicken falling back to earth at 400kph. Even the parachute could not slow the payload in the thin air. It slowed down as it reached 28Kms altitude and the air got a bit thicker.

We have started fund raising as we need help to cover the enormous cost of Project ThunderStruck.

If you can offer a dollar or two (every bit counts) we will love you. If you are rich and wish to really help, there are rewards. They are called “Perks” and we have some that I hope you will love. Some of our payloads will go supersonic before the big event, but they will not be aircraft. We might even donate one of our supersonic payloads to a generous contributor.

CLICK HERE TO DONATE with PAYPAL or on the Project ThunderStruck image at top right of the website
Below is the story from the FundRazr Website

Have a Credit or Debit card. We will have a contribution link in a couple of days!

Project ThunderStruck set to Inspire Kids Worldwide.

Fighter jets break the sound barrier every day, but this radio controlled aircraft has no engine, weighs 9Kg (20lbs), is 2.5m (8 ft) long. So the pilot must be a really experience Top Gun to fly this plane at 1,800kph (1,120mph) Well, no. His name is Jason brand and he
is 12 years old
. Can he make this a reality? Yes, he has the experience and the skills. More on that later.

So Why is this Important?

This is probably one of the most important projects that you can support. This is beyond the ability of almost every adult on the
planet, yet a 12 year old student is set to inspire kids around the world with a daring project that is pure STEM – Science Technology Engineering Mathematics. It will make the seemingly impossible the domain of the young if they choose to break down the barriers imposed by themselves or others. Not only that, there is real science going on here.

Jason’s father, Robert Brand, is a well known space entrepreneur. He is designing and testing small winged re-entry vehicles. He was
discussing with Jason the testing fo the transonic phase of the re-entry, that is, the part of the flight transitioning the sound barrier. Jason proposed that he create Project ThunderStruck and that his father asist with the project management.

The Cost

That is the hard part. We will have to do lots of testing and even the record breaking event will cost about $30,000 alone. The total cost will be $80,000 but we will only need $20,000 from crowd funding. If we make more, it will make our fundraising from sponsors a lot easier. Sponsors tend to come on board later, once they see progress.

Your Assistance is Essential

Your help now is essential. It gets us started immediately. Flying balloons to the edge of space for testing is an expensive exercise and we have a 7 hour drive each way to get into areas of low air traffic away from the major trunk routes. We also have to buy a lot of radio systems to allow remote control from the ground when the glider is up to 100kms distance.

Who is Jason Brand?

He is a 12 y/o student from Sydney Secondary College, Balmain Campus in Sydney, Australia.

He carried out his first High Altitude Balloon (HAB) project at age 9 and was so inspired that he sat for his amateur radio license at 9 years old. Since then he has launched a total of 19 HAB flights and recovered all 19. Some flights were in Croatia where mountains, swamps and landmines are risks not seen in Australia. He is also the Student Representative for Team Stellar – A Google Lunar X-Prize team attempting to get a rover onto the moon.

J20130414 Jason Brand on the Fuzzy Logic Science Showason appears on Radio and TV regularly and the picture right shows him talking about HAB flights on Canberra’s Fuzzy Logic Science Show in 2013. He is also a member of the Australian Air League, Riverwood Squadron. He plans to solo on his 15th birthday.

His father Robert Brand is an innovator in creating low cost solutions for spaceflight. He speaks regularly at international conferences, is a regular guest lecturer on aerospace at Sydney University, writes about aerospace and takes a very “hands on” approach to space. He supports Jason’s project fully.

How will ThunderStruck work?

The same way that the first pilots broke the sound barrier: in a steep dive. The problem is that since there is no engine and the biggest issue is air resistance, Jason will launch the aircraft from over 40km or nearly half way to space! He will get it there on a high altitude balloon. There the air is very thin. A fraction of one percent of the air at sea level. During the dive, the craft will accelerate to well over Mach 1 and less than Mach 2 and will need to be controllable by its normal control surfaces to pass as an aircraft. As the air thickens at low altitudes, the craft will slow and with the application of air brakes will slow and level off for normal flight to the ground.

The Technology

We will have a camera in the nose of the aircraft and it will transmit TV images to the pilot on the ground. Jason will be either in a darkened room with a monitor or wearing goggles allowing him to see the camera. This provides what is known as First-person Point of View (FPV). The aircrafts instruments will be overlaid on the video signal. This is known as “On Screen Display” or OSD. Below is a view typical of what will be seen by Jason as he lands the craft.

osdThe video signal must travel over 100kms to be assured of the craft being in the radius of the equipment. Similarly we must send commands to the control surfaces of the radio controlled aircraft. Again this must work at distance over 100kms. The craft has ailerons, elevators and rudder as well as airbreaks and other systems that need to be controlled. We will use a 10 channel system to ensure that we have full control of every aspect of the craft.

We will have to buy a $5,000 GPS unit capable of sampling at what is essentially the speed of a missile. These are highly restricted items, but essential. We will record the speed with both this unit and radar. The unit will record to an SD card and also send back telemetry every second. It is essential to knowing the speed during the flight rather than waiting until after the event. We will also need a radar responder to allow other aircraft and air traffic controllers to know where our craft is at any time.

The Big Event

We can expect global TV News coverage of the event and many records to be broken. The day will start by filling a large Zero Pressure Balloon like the one pictured below.

OLYMPUS DIGITAL CAMERAThe balloon will carry the aircrafy to over 40km where it will be released and go into a steep dive and break the sound barrier. As the air thickens, the speed will slow and the craft will be pulled out of the dive and levelled off to drop speed. The aircraft will eventually land and data and video records will be recovered. We will already know the top speed, but there is nothing like solid data rather than  radio telemetry that may miss the odd data packet.

There will be opportunities to attend, but it is likely to be in a rather remote part of the state. The flight will be broadcast over the Internet and the opportunity to track and follow the flight will be available to all. All up the opportunity to be involved is high and the science and inspiration will be out of this world. Project ThunderStruck is set to thrill.

Visit our wotzup.com website for more space and balloon stories.

We are bringing our Projectthunderstruck.org site early in October.

Zero Pressure Balloon Converter

OLYMPUS DIGITAL CAMERAWeather Balloon to Zero Pressure Balloon Converter.

By Robert Brand

Two weeks ago I was a guest lecturer in Aerospace at a Sydney University spoke about the current space projects I am involved in. It was good to see interest from some students to take part in some of the activities. I stayed on to listen to the second guest lecturer talk about high energy particles and there effects on astronauts and also equipment.

Following the lectures I was invited to talk about a difficult project of taking a science experiment to the stratosphere and holding it there for 3 hours. Now this creates a real challenge. It can either be done by a seriously expensive Zero Pressure Balloon (ZPB), shown in the picture at right, or it needs some way of holding a weather balloon below it burst point, both are not ways i would like to think about. Either big dollars or big problems.

My solution is to turn the Weather Balloon into a ZPB before the envelope pops and the lot comes down. I have designed a Weather Balloon to Zero Pressure Balloon Converter. Due to the commercial ramifications, I cannot give the fine details of the specific way we will do this or the materials used, but as you will obviously realise, it means opening up the balloon canopy so the helium (or Hydrogen) stops expanding the balloon fabric thus the balloon should then find a floating point, provided that the canopy is not too elastic.

Since this will require additional weight and we need to get extreme height to be in the stratosphere at a required altitude and we don’t want the risk of the canopy bursting early, I expect that it will require 2-3Kg weather balloons. Not cheap, but way less than ZPB that probably start at a price of US$7,000 or so.

Now for the hard part. We will need to test to see exactly what happens and how to control the eventual height based on gas fill, elasticity of the balloon, the balloon size / weight and the payload size.

The balloon should survive until next morning in the stratosphere when the sun’s UV will cause the envelope to deteriorate along with the punishment it has received during the night. Given that it is not fully stretched, it may in fact last much longer. This will the subject of more testing.

The next problem is that the stratospheric winds run east to west – the opposite of the jet stream – yes there is balance in the world! the difference is (from our experience over Australia) that the wind starts out light and then increases with strength at height. Several times we have seen stratospheric winds reaching 100kph at altitudes of 33.333Km (/3 the way to space). As that is our highest record and we have been involved in flights by others to that height, it seems a fairly linear increase over height and it may get faster at higher altitude. Only tests will tell, but 3 hours at 33.33Km is a long drive. It means carefully planning our launch points and recovery points. In fact we may need to launch on days when the jet stream is fast to drag the payload a long way to the east (say 150km and then allow the winds in the stratosphere to pull it 300Km to the west and allow it to fall back through the jet stream with a big parachute, allowing time to pull the payload back to near the launch point.

With radio cutdown an option, we need to be close enough for that to work on UHF frequencies of to create a HF cutdown on much lower radio frequencies that will travel further.

Weather to ZPB converterAs APRS is not an option on commercial flights, We will use SPOT3 units in gimbals for the commercial tracking. For non commercial flights I have toyed with the idea of using the HAM radio based APRS to upLink commands for cutdown. As a final cutdown I am looking at a time based mechanism to terminate the envelope or cut down the payload. More testing!

As a  teaser, the photo to the right is some of the “plumbing” without the servo and other systems. It is intentionally difficult to see, but the point is that it is off the shelf technology that is very light weight. In fact not all of this mechanism flies – some is only there for the “fill” and another device (not shown) makes the final configuration. When the cutdown occurs, we will lose the servo and the plumbing – a total cost of about US$15. Total weight of equipment lost will be in the order of 200 grams and the balloon envelope will also be able to fall to earth but since it will not be blown to pieces, it will flutter to a soft landing. I expect to have a number of the mechanisms ready and off the shelf to provide services to customers that wish to have low cost long times in the stratosphere. Note, that if we can keep the payload closer to the lower parts of the stratosphere, the drift is negligible from our general experience for a three hour duration in the stratosphere.

Other benefits here are a new easy fill system that requires no more struggling with cable ties at the last moment while holding on to a big balloon. I expect that we will use a smaller version for smaller balloons. The weight is likely to be an additional 50 grams that we can factor in, but the benefits will be great in securing the payload and ensuring an easy and safe tie off in the final moments. Once we test that I will publish the arrangements. More on the Zero Pressure Balloon Converter in future posts.